】 排 列 2 - 3

例題1

設n ∈ N , 求滿足下列各式之n:

(1)
$$P_3^n: P_3^{n-1}=5:4$$
.

(2)
$$P_n^{10} = 4P_{n-1}^{10}$$

(1)
$$P_3^n : P_3^{n-1} = 5 : 4$$
. (2) $P_n^{10} = 4P_{n-1}^{10}$. (3) $\not\approx 25P_3^n + P_4^{n+1} = 12P_3^{n+1}$.

留: (1) 若
$$5P_3^{n-1} = 4P_3^n \Rightarrow 5(n-1)(n-2)(n-3) = 4n(n-1)(n-2)$$

$$\therefore n-1 \ge 3 \Leftrightarrow (n-1)(n-2) \ne 0 \quad \therefore 5 (n-3) = 4n \Leftrightarrow n=15$$

$$(2) \frac{10!}{(10-n)!} = 4 \times \frac{10!}{(10-(n-1))!} \Rightarrow (11-n)! = 4 (10-n)!$$

$$\Rightarrow$$
 11-n=4 :.n=7

(3)
$$25 \times \frac{n!}{(n-3)!} + \frac{(n+1)!}{(n+1)-4!} = 12 \times \frac{(n+1)!}{(n+1)-3!}$$

$$\Rightarrow \frac{25}{(n-3)!} + \frac{n+1}{(n-3)!} = 12 \times \frac{n+1}{(n-2)!} \Rightarrow 25 + (n+1) = \frac{12(n+1)}{(n-2)}$$

$$\Rightarrow$$
 25 $(n-2) + (n+1)(n-2) = 12 (n+1)$

$$\Rightarrow$$
 25n-50+n²-n-2=12n+12 \Rightarrow n²+12n-64=0

$$(n-4)(n+16) = 0 \Rightarrow n=4, -16 (n \ge 3)$$
 :. $n=4$

例題 2

從6位同學中挑選3位擔任班長、副班長與風紀股長三種職務(一人只能擔任一種職 務),有幾種方法?

 班長
 副班長
 風紀股長

 選法有 6 × 5 × 4 = 120 (種)

例題3

- (1) 4 男 3 女排成一列, 男女相間之排法有 種.
- (2) 4 男 4 女排成一列 , 男女相間之排法有_____種 .

解:(1)4男3女排成一列,男女相間

其排法爲男女男女男女男, 方法數有 4!x3!=24x6=144(種)

- (2) 4 男 4 女,排成一列,男女相間其方式有兩種:

 - ① 男女男女男女男女 ② 女男女男女男女男 □ ①+②得 2x4!4!=1152 (種)

例題 4

甲、乙、丙、丁、戊等5人排成一列,求下列各情形的不同方法數:

- (1) 任意排列。
- (2) 任取其中三人排成一列。
 - (3) 甲乙丙必相鄰。

- (4) 甲乙丙不全相鄰。 (5) 甲乙丙任二人不相鄰。 (6) 甲乙丙中恰二人相鄰。

- (7) 甲乙不相鄰且丙丁不相鄰。
- **屬**:(1)任意排列有 5!=120 (種)
 - (2) $P_3^5 = 5 \times 4 \times 3 = 60$ (種)
 - (3) (甲乙丙) 丁戊

3!x3!=6x6=36(種) 甲乙丙作直線排列

甲乙丙 丁戊,3件物件作直線排列

- (4) 甲乙丙不全相鄰 = 任意排 (甲乙丙全相鄰) = 5! 36 = 120 36 = 84(種)
- (5) 甲 乙 丙 〇丁〇戊〇

先排丁、戊,再將甲、乙、丙插入空隙

□ 2!x3!=12 (種) 插入甲、乙、丙

先排丁、戊

- (6) 甲、乙、丙恰有2人相鄰=全-(三人相鄰)-(三人皆分開) =120-36-12=72 (種)
- 戊(丙丁

 $n(\overline{\mathbb{P}Z}\cap\overline{\overline{\mathbb{P}T}})$

$$=n(\overline{\mathbb{P}Z}\cup\overline{\mathbb{N}})=n(U)-(n(\mathbb{P}Z)+n(\overline{\mathbb{N}}))-n(\mathbb{P}Z\cap\overline{\mathbb{N}})$$

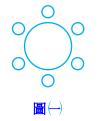
 $=5!-(2!\times4!+2!\times4!-2!\times2!\times3!)=120-(48+48-24)=48$ (種)

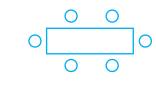
例題 5

今有6位朋友,則:

- (1) 圍一圓桌而坐有 種坐法。
- (2) 圍成長方形桌子,長邊各坐2人,短邊各坐1人有 種坐法。
- (3) 圍成正三角形桌子,每邊各坐2人,有 種坐法。

- **Y** : (1) 圖(-):環狀排列: $\frac{6!}{6}$ = 120 (種)
 - (2) 圖(二): 長方形排列數: $\frac{6!}{2}$ = 360 (種)
 - (3) 圖(=): 正三角形排列數: $\frac{6!}{3}$ = 240 (種)





圖二

例題6

主人夫婦與賓客二對夫婦共六人圍一圓桌而坐,則下列各情形的坐法分別有幾種?

- (1)任意入坐。
- (2)男女相間而坐。
- (3)每對夫婦相鄰。

- (4) 男女相間且夫婦相鄰。 (5)主人夫婦相對而坐。 (6) 每對夫婦相對而坐。
- (7) 男女相間夫婦不全相鄰。(8) 男女相間但夫婦不相鄰。(9) 恰有二對夫婦相鄰。

$$\mathbf{R}$$
: (1) $\frac{6!}{6} = 5! = 120$ (種)

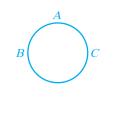
(2) 男生先環狀排列 $\frac{3!}{3}$ =2, 女牛在兩男之間有 3!=6,

所求爲 $\frac{3!}{3}$ x3!=12(種)

(3) 每一對夫婦綁在一起, 環狀排列有 $\frac{3!}{3}$ =2 每一對夫婦可以左右互換, 方法有 $2^3 = 8$

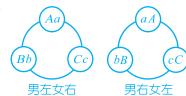
所求爲
$$\frac{3!}{3}$$
x2³=16 (種)

(6) 男生先環排: $\frac{3!}{3}$ =2 女生依序坐對面, 再將男女互換 共有 $\frac{3!}{3}$ ×2²=8 (種)

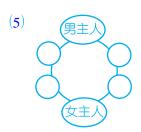


(7) (男女相間) - (男女相間且夫婦相鄰) $=\frac{3!}{3}$ x3!- $(\frac{3!}{3}$ x2) =12-4=8 (種)

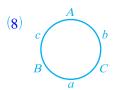
(4)



三對夫婦環狀排列有 $\frac{3!}{3}$ ×2=4(種)



所求爲4!=24(種)



$$\frac{3!}{3}$$
×1=2 (種)

第三對夫婦分開插空隙

$$(9) \frac{P_{2}^{3}}{2} \times P_{1}^{2} \times 2^{2}$$

相鄰的夫婦互換位子

三對夫婦中取2對作環排 所求爲3×2×4=24(種)

例題 7

將 "PROBABILITY" 11 個字母排成一列,則:

- (1) 其排列數有_____種.
- (2) 若保持 P, R, O 次序, 其排列數有 種.

 $\mathbf{M}: (1)$ **PROBABILITY** 中有 2 個 \mathbf{B} , 2 個 \mathbf{I} , 利用不盡相異物的直線排列法

所求為
$$\frac{11!}{2!2!}$$
=9979200 (種)

(2) P , R , O 三字視爲相同物 ,將 \square \square BABILITY 作直線排列之後 再將 P , R , O 填入 \square \square 中

所求爲
$$\frac{11!}{2!2!3!}$$
=1663200 (種)

例題 8

將「庭院深深深幾許」七個字全取而排列,求下列各情況之方法數。

- (1) 任意排列。
- (2) 使其中三個「深」字不完全連在一起。
- (3) 使其中三個「深」字完全分開。
- (4) 使其中三個「深」字至少有兩個相鄰。
- (5) 使其中三個「深」字恰有兩個相鄰。

解:三個「深」

- (1) 任意排列: 7! = 840 (種)
- (2) 三個「深」完全相鄰的排法有:庭院 (深深) 幾許 □ 5! 所求=全-(三個深完全相鄰) = 7! 3! -5! = 840 - 120 = 720 (種)
- (3) ○庭○院○幾○許○ ↑ ↑ ↑ 深 深 深 先將「庭」、「院」、「幾」、「許」作直排再將三個「深」插入空隙 其方法數爲 4! • P⁵/_{3!} = 240 (種)
- (4) 全-(完全不相鄰)=840-240=600(種)
- (5) 恰有兩個「深」相鄰=全-(完全分開)-(完全相鄰) =840-240-120=480(種)

例題9

甲、乙、丙、丁、戊、己等6人排成一列,則:

- (1) 規定甲一定在乙右方之排法有幾種?
- (2) 甲在乙之左方,乙又在丙之左之排法有幾種?
- (3) 甲在乙和丙之左之排法共有幾種?
- (4) 甲必排在乙丙之左,且丁必排在乙丙之右的排法共有幾種?
- (5) 甲在乙之左,丙在丁之左,戊與己相鄰之排法共有幾種?
- **留**:
 (1) 甲、乙視爲同物,□□丙丁戊己,排法: 6! 2! = 360 (種)
 - (2) 甲、乙、丙視爲同物, $\Box\Box$ 丁戊己,排法: $\frac{6!}{3!}$ =120(種)

所求爲 $\bigcirc\bigcirc\bigcirc$ 丁戊 \bigcirc 丁戊 \bigcirc ,有 $\frac{6!}{3!}$ x2!=240 (種)

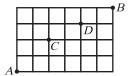
 (4) 依題意
 (4) (本題意)
 (4) (本記意)
 (4) (本記意)

所求即爲 $\bigcirc\bigcirc\bigcirc\bigcirc$ 戊己 \Rightarrow 共有 $\frac{6!}{4!}$ x2=60 (種)

(5) 將甲、乙視爲同物,丙、丁視爲同物,戊、己綁一起

例題 10

如右圖,棋盤形街道,一人由 A 走到對角 B 要取捷徑,求下列之走法數。



- (1) 有幾種不同之走法?
- (2) 每次需經過 D 之走法有幾種?
- (3) 經過 C 且經過 D 之走法有幾種?
- (4) 不經過 C 且不經過 D 之走法有幾種?
- \mathbf{M} :(1) 走捷徑只能向右,向上走,即→,↑

A 走到 B 的捷徑走法可視爲 (↑ ↑ ↑ ↑ → → → → →) 的直線排列排法有 10!

$$\frac{10!}{6! \times 4!} = 210$$
 (種)

(2)
$$A \to D \to B : \frac{7!}{4! \times 3!} \times \frac{3!}{2! \times 1!} = 105$$
 (種)

(3)
$$A \to C \to D \to B : \frac{4!}{2! \times 2!} \times \frac{3!}{2! \times 1!} \times \frac{3!}{2! \times 1!} = 54 \text{ (fat)}$$

(4)
$$n(C' \cap D') = n(C \cup D)' = n(U) - n(C \cup D)$$

= $n(U) - (n(C) + n(D) - n(C \cap D))$

$$A \to C \to B : \frac{4!}{2!2!} \times \frac{6!}{4!2!} = 90$$

∴所求爲 210-105-90+54=69 (種)

例題 11

- (1) 將 5 封信,任意投入 3 個郵筒,有_______種投法。
- (2) 有渡船 3 艘,每艘可載 6 人,今有 5 人要同時安全渡河,則有_____種方法。
- (3) 投擲一粒骰子 4 次,則所出現點數的排列數為______。
- (4) 容許重複使用數字 0, 1, 2, 3, 則可作出______個三位數。
- (5) 設有 3 件不同禮物送給 5 位同學可兼得,則有_____種得獎情形。

 \mathbf{M} : (1) 設 5 封信,分別爲 A,B,C,D,E,且每一封信皆有 3 個不同的郵筒可供選擇

 $A \to B \to C \to D \to E$

投法有 3×3×3×3×3=3⁵=243 (種)

(2) 設 5 人分別爲 A , B , C , D , E , 每一人皆有 3 艘不同的船可供選擇 , 則

$$A \rightarrow B \rightarrow C \rightarrow D \rightarrow E$$

搭船有 3×3×3×3×3=3⁵=243 (種)

(3) 每一粒骰子可能出現的點數有6種,投擲4次

共有 6⁴=1296 (種)

- (4) 設三位數爲 $a \times 10^2 + b \times 10 + c$, 其中 $a \in \{1, 2, 3\}$, $b \in \{0, 1, 2, 3\}$, $c \in \{0, 1, 2, 3\}$
 - a b c \rightarrow 3×4×4=48 (種)
- (5) 3 件不同的禮物,可分送給 5 個不同的同學

$$A$$
 B C \rightarrow 5×5×5=125 (種)