2-5

空間中的直線方程式

例題1

將下列各直線以參數式表示: (1) $L_1: \frac{x-5}{2} = \frac{y}{4} = \frac{z+3}{-1}$; (2) $L_2: \begin{cases} 2x-y+3z-4=0 \\ x+4y-2z+7=0 \end{cases}$.

in :
$$(1) 直線參數式爲 \begin{cases} x=5+2t \\ y=4t \end{cases}, t \in \mathbb{R}$$

(2) 方向比為
$$\begin{vmatrix} -1 & 3 \\ 4 & -2 \end{vmatrix}$$
 : $\begin{vmatrix} 3 & 2 \\ -2 & 1 \end{vmatrix}$: $\begin{vmatrix} 2 & -1 \\ 1 & 4 \end{vmatrix}$ = -10 : 7 : 9 令 $z = 9t$ 代回得 $\begin{cases} 2x - y + 27t - 4 = 0 \\ x + 4y - 18t + 7 = 0 \end{cases}$ \Rightarrow $\begin{cases} x = 1 - 10t \\ y = -2 + 7t \end{cases}$: . 直線參數式為 $\begin{cases} x = 1 - 10t \\ y = -2 + 7t \end{cases}$ $t \in \mathbb{R}$ $t \in \mathbb{R}$

例題 2

設 $P\left(5,0,-1\right)$, $Q\left(3,1,7\right)$, 下列何者是 \overrightarrow{PQ} 的方程式 ?

(A)
$$\begin{cases} x = 5 + 2t \\ y = t \\ z = -1 - 8t \end{cases}$$
, $t \in \mathbb{R}$ (B)
$$\begin{cases} x = 3 - 2t \\ y = 1 - t \\ z = 7 + 8t \end{cases}$$
 (C)
$$\begin{cases} x = 1 + 4t \\ y = 2 - 2t \\ z = 15 - 16t \end{cases}$$
, $t \in \mathbb{R}$

(D)
$$\frac{x-2}{2} = \frac{y-1}{-1} = \frac{z-3}{-8}$$
 (E) $\frac{x+3}{-6} = \frac{y-4}{3} = \frac{z-31}{24}$.

三知
$$\overrightarrow{PQ} = (-2, 1, 8)$$
 $\therefore \overrightarrow{PQ} : \begin{cases} x = 5 - 2s \\ y = s \\ z = -1 + 8s \end{cases}$, $s \in \mathbb{R}$

- (A) 方向比爲 2:1:-8 ≥ -2:1:8 (不合)
- (B) 方向比爲-2:-1:8\(\in -2:1:8(不合)

(C)
$$\Leftrightarrow s=2-2t \not \subset X \not \overrightarrow{PQ}: \begin{cases} x=5-2s \\ y=s \\ z=-1+8s \end{cases}, s \in \mathbb{R} \Rightarrow \begin{cases} x=1+4t \\ y=2-2t \\ z=15-16t \end{cases}, t \in \mathbb{R} (\stackrel{\triangle}{\hookrightarrow})$$

(D) 方向比爲 2:-1:-8 ≒-2:1:8 (不合)

(E)
$$\frac{x+3}{-6} = \frac{y-4}{3} = \frac{z-31}{24} = t \Rightarrow \begin{cases} x = -3-6t \\ y = 4+3t \\ z = 31+24t \end{cases}$$
, $t \in \mathbb{R}$

令
$$t = \frac{s-4}{3}$$
 代入口 $\begin{cases} x = 5-2s \\ y = s \end{cases}$, $s \in \mathbb{R}$ 與 \overrightarrow{PQ} 同 $z = -1+8s$

故選(C)(E)

例題3

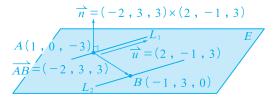
求過點(
$$2$$
, -1 , 3)且與直線 L : $\begin{cases} x+y+z=1 \\ 2x-y+3z=2 \end{cases}$ 平行的直線方程式為______。

alient implies L : $\begin{bmatrix} x+y+z=1 \\ 2x-y+3z=2 \end{bmatrix}$ 其方向比為 $\begin{vmatrix} 1 & 1 \\ -1 & 3 \end{vmatrix}$: $\begin{vmatrix} 1 & 1 \\ 3 & 2 \end{vmatrix}$: $\begin{vmatrix} 1 & 1 \\ 2 & -1 \end{vmatrix}$ = 4 : -1 : -3 :

例題 4

を L_1 上取 A (1,0,-3) , L_2 上取 B (-1,3,0) ,則 \overrightarrow{AB} = (-2,3,3) $(-2,3,3) \times (2,-1,3) = (3,3,-1)$ 取平面法向量 (3,3,-1) ,方程式爲 3(x-1)+3(y-0)-(z+3)=0

取平面法向量(3,3,-1),方程式為3(x-1)+3(y-0)-(z+3)=0即 3x+3y-z=6



例題 5

設點 P(1,-2,3) , 直線 $L:\frac{x-2}{1}=\frac{y+1}{2}=\frac{z+3}{2}$, 試求:

- (1) P 在直線 L 上的投影點坐標為______.
- (2) P對於直線 L 的對稱點坐標為 .
- (3) P 點到直線 L 的距離為 •
- \mathbf{B} : (1) 設 \mathbf{B} 爲 \mathbf{P} 在直線 \mathbf{L} 上的投影點
- 2 高中數學(三)習作

$$x=2+t$$
 $y=-1+2t$, $t\in\mathbb{R}$ $z=-3+2t$
$$\overrightarrow{P(1,-2,3)}$$
 $y=-1+2t$, $t\in\mathbb{R}$ $z=-3+2t$
$$\overrightarrow{PB}=(1+t,1+2t,-6+2t)$$
 又 $t=-1$ 之方向向量 $t=-1$ $t=-1$

(2) 設P對於直線L的對稱點爲Q(x,y,z)

利用
$$B$$
 爲 P , Q 之中點 , 即 $\frac{x+1}{2} = 3$, $\frac{y-2}{2} = 1$, $\frac{z+3}{2} = -1$

$$\therefore x=5, y=4, z=-5 \quad \therefore Q (5, 4, -5)$$

(3) 由(1)知
$$B = (3, 1, -1)$$
 ∴ P 到直線 L 的距離爲 \overline{PB} ∴ $\overline{PB} = \sqrt{(3-1)^2 + (1+2)^2 + (-1-3)^2} = \sqrt{4+9+16} = \sqrt{29}$

例題6

器: 設
$$\overline{PQ} \perp L$$
於 $Q(t+2, 2t-2, -2t+10)$
 $\overline{PQ} = (t+1, 2t-4, -2t+10)$
由 $\overline{PQ} \perp \overline{\ell} = (1, 2, -2)$
得 $(t+1) + 2(2t-4) - 2(-2t+10) = 0$,即 $t=3$
因此 $\overline{PO} = (4, 2, 4)$,最短距離 $\overline{PO} = 6$

例題 7

雨平行線
$$L_1: \frac{x-3}{1} = \frac{y}{-1} = \frac{z+2}{-2}$$
 , $L_2: \frac{x-9}{2} = \frac{y+2}{-2} = \frac{z+1}{-4}$, 則:

- (1) 包含 L_1 與 L_2 的平面方程式為______.
- (2) 兩平行線 L_1 與 L_2 的距離為_____.
- 題:(1) 在 L_1 上取點 P_1 (3,0,-2), L_2 上取點 P_2 (9,-2,-1) 則平面的法向量 $\vec{n} \perp$ (1,-1,-2)且 $\vec{n} \perp \overline{P_1P_2} = (6,-2,1)$ $\Rightarrow \vec{n} // (\begin{vmatrix} -1 & -2 \\ -2 & 1 \end{vmatrix}, \begin{vmatrix} -2 & 1 \\ 1 & 6 \end{vmatrix}, \begin{vmatrix} 1 & -1 \\ 6 & -2 \end{vmatrix})$ = (-5,-13,4) // (5,13,-4)∴平面方程式 E 可令為 5x+13y-4z+k=0代入 P_1 (3,0,-2) 得 E: 5x+13y-4z-23=0(2) $\vec{\ell} = (1,-1,-2)$, $\vec{P_1P_2} = (6,-2,1)$

$$d(L_{1}, L_{2}) = \frac{|\overrightarrow{\ell} \times \overline{P_{1}P_{2}}|}{|\overrightarrow{\ell}|} = \frac{\sqrt{(-5)^{2} + (-13)^{2} + 4^{2}}}{\sqrt{1^{2} + (-1)^{2} + (-2)^{2}}} = \frac{\sqrt{210}}{\sqrt{6}} = \sqrt{35}$$

$$\frac{P_{2}(9, -2, -1)}{d} L_{2}$$

$$\frac{d}{|\overrightarrow{\ell}| = (1, -1, -2)}$$

例題8

A(1,-1,-2) , B(3,1,0) , 求 \overline{AB} 在平面 E:x-y-z=1 上的投影長.

**:方法一:先做 A, B 在平面 E 的投影點 A', B', $\overline{AA'} = d(A, E) = \frac{|1+1+2-1|}{\sqrt{1^2 + (-1)^2 + (-1)^2}}$ $\overline{BB'} = d(B, E) = \frac{|3-1-0-1|}{\sqrt{1^2 + (-1)^2 + (-1)^2}} = \frac{\sqrt{3}}{3}$ $\overline{AC} = \overline{AA'} - \overline{A'C} = \overline{AA'} - \overline{BB'} = \frac{2\sqrt{3}}{3}$

利用畢氏定理得
$$\overline{BC} = \sqrt{\overline{AB}^2 - \overline{AC}^2} = \sqrt{12 - \frac{4}{3}} = \frac{4\sqrt{6}}{3}$$

例題9

空間中雨歪斜線
$$L_1$$
: $\frac{x-3}{1} = \frac{y}{2} = \frac{z+2}{-2}$, L_2 : $\frac{x}{3} = \frac{y-2}{1} = \frac{z+1}{-2}$,

(1)若平面 E 包含 L_1 且與 L_2 不相交,則平面 E 的方程式為何 P(2) P(2) P(2) P(3) P(4) P(3) P(4) P(4)

 $a: L_1 \subseteq E, L_2 // E, \overrightarrow{\ell_1} 爲 L_1$ 之方向向量, $\overrightarrow{\ell_2} 爲 L_2$ 之方向向量

- (2) 在 L_2 上取一點 P_2 (0,2,-1),則

$$d(L_1, L_2) = d(L_2, E) = d(P_2, E) = \frac{|2 \cdot 0 + 4 \cdot 2 + 5(-1) + 4|}{\sqrt{2^2 + 4^2 + 5^2}} = \frac{7\sqrt{5}}{15}$$

例題 10

4 高中數學(三)習作

雨直線 $L_1: \frac{x-5}{3} = \frac{y+7}{-6} = \frac{z-1}{-2}$, $L_2: \frac{x-1}{3} = \frac{y}{2} = \frac{z+5}{2}$, 若 $P \in L_1$, $Q \in L_2$ 且 \overline{PQ} 為

 L_1 , L_2 的公垂線段 , 則:

(1) 垂足 P 點坐標為_____; (2) 垂足 Q 點坐標為_____; (3) L_1 與 L_2 間的距離為____.

**: 設
$$P$$
 點坐標($5+3t_1$, $-7-6t_1$, $1-2t_1$), Q 點坐標($1+3t_2$, $2t_2$, $-5+2t_2$)

故
$$\overrightarrow{PQ}$$
= $(-3t_1+3t_2-4, 6t_1+2t_2+7, 2t_1+2t_2-6)$

由
$$\overrightarrow{PQ} \perp \overrightarrow{L_1}$$
得 $(-3t_1+3t_2-4, 6t_1+2t_2+7, 2t_1+2t_2-6)\cdot (3, -6, -2)=0$

整理得 $-49t_1-7t_2-42=0$ \Rightarrow $7t_1+t_2=-6$

由
$$\overrightarrow{PQ} \perp \overrightarrow{L_2}$$
得 $(-3t_1+3t_2-4, 6t_1+2t_2+7, 2t_1+2t_2-6)\cdot(3, 2, 2)=0$

整理得 $7t_1+17t_2-10=0$

因此
$$\begin{cases} 7t_1 + t_2 = -6 \\ 7t_1 + 17t_2 = 10 \end{cases}$$
,解聯立得 $t_1 = -1$, $t_2 = 1$ 代回 P , Q 坐標

所以
$$P(2,-1,3)$$
 , $Q(4,2,-3)$, L_1 與 L_2 間的距離爲 $\overline{PQ} = \sqrt{2^2 + 3^2 + 6^2} = 7$

例題 11

兩歪斜線
$$L_1$$
:
$$\begin{cases} x+y+5=0 \\ 3y+2z+7=0 \end{cases}$$
 與 L_2 :
$$\begin{cases} 2x+2y+z-11=0 \\ x+4y+z-16=0 \end{cases}$$
 之公垂線段長為______.

#: 設包含 L_1 目平行 L_2 之平面爲 E: k(x+y+5) + (3y+2z+7) = 0

其法向量 $\overline{n} = (k, k+3, 2)$

東法同重
$$n - (k, k+3, 2)$$

$$L_2 之方向比爲 \begin{vmatrix} 2 & 1 \\ 4 & 1 \end{vmatrix} : \begin{vmatrix} 1 & 2 \\ 1 & 1 \end{vmatrix} : \begin{vmatrix} 2 & 2 \\ 1 & 4 \end{vmatrix} = (-2) : (-1) : 6$$

$$\mathbb{D} \vec{\ell}_2 = (-2, -1, 6) \quad \dot{\mathbf{p}}_{n} : \vec{\ell}_2 = 0$$

取
$$\vec{\ell}_2 = (-2, -1, 6)$$
 , 由 $\vec{n} \cdot \vec{\ell}_2 = 0$

得
$$-2k-k-3+12=0$$
,即 $k=3$ 所以 $E: 3x+6y+2z+22=0$

在 L_2 上任取一點P(1,3,3),則

$$(L_1, L_2$$
 距離) = $(P$ 與平面 E 距離) = $\frac{|3+18+6+22|}{\sqrt{3^2+6^2+2^2}} = \frac{49}{7} = 7$