	高雄市明誠中學 高二數學平時測驗 日期:98.09.29					
範	1-3 向量座標表示法	班級		姓		
圍		座號		名		

一、單選題 (每題 5 分)

() 1. 設平行四邊形 ABCD 的三個頂點爲 A(1,2) , B(5,-2) , C(4,1) , 則 D 之坐標爲 (1)(8,-3) (2)(2,-1) (3)(0,5) (4)(-2,1) .

【解答】 3

【解析】SOL一:

設
$$D$$
點坐標爲 (x,y) , $\overrightarrow{AD} = (x-1,y-2)$, $\overrightarrow{BC} = (-1,3)$

$$\therefore \overrightarrow{AD} = \overrightarrow{BC} \quad \therefore \quad x = 0 , \quad y = 5 \quad \Rightarrow \quad \exists \Box D(0,5)$$

SOL =:

平行四邊形對角線互相平分 \Rightarrow $\begin{cases} 1+4=5+x \\ 2+1=-2+y \end{cases}$, (x,y)=(0,5)

() 2.
$$\overrightarrow{\otimes}_{a} = (2,-4)$$
, $\overrightarrow{b} = (-5,8)$, $\cancel{\square}_{3} (5\overrightarrow{a} + 2\overrightarrow{v}) - 4(3\overrightarrow{v} - \overrightarrow{b}) = \overrightarrow{0}$, $\cancel{\square}_{v} = (1)(-\frac{5}{3},\frac{14}{3})$ $(2)(\frac{5}{3},-\frac{14}{3})$ $(3)(-\frac{5}{3},-\frac{14}{3})$ $(4)(\frac{5}{3},\frac{14}{3})$ $(5)(2,5)$.

【解答】 2

【解析】
$$3(5\overrightarrow{a}+2\overrightarrow{v})-4(3\overrightarrow{v}-\overrightarrow{b})=\overrightarrow{0}$$
 \Rightarrow $15\overrightarrow{a}+6\overrightarrow{v}-12\overrightarrow{v}+4\overrightarrow{b}=0$ \Rightarrow $6\overrightarrow{v}=15\overrightarrow{a}+4\overrightarrow{b}=15(2,-4)+4(-5,8)=(10,-28)$ \Rightarrow $\overrightarrow{v}=(\frac{5}{3},-\frac{14}{3})$

() 3. 設兩向量
$$\vec{a}$$
 = (1,3) , \vec{b} = (3,-1) , 則 $|\vec{a}+2\vec{b}|$ = (1) $2\sqrt{5}$ (2)5 (3) $4\sqrt{3}$ (4) $5\sqrt{2}$ (5) $5\sqrt{3}$.

【解答】 4

【解析】
$$\overrightarrow{a} + 2\overrightarrow{b} = (1,3) + 2(3,-1) = (7,1)$$
 , $|\overrightarrow{a} + 2\overrightarrow{b}| = \sqrt{7^2 + 1^2} = \sqrt{50} = 5\sqrt{2}$

() 4.
$$A(-3,2)$$
 , $B(1,-1)$, $C(7,-3)$, 若 $\overrightarrow{PA}+2\overrightarrow{PB}+\overrightarrow{PC}=\overrightarrow{0}$, 則 P 之坐標爲 (1) $(-6,3)$ (2) $(-\frac{3}{2},\frac{3}{4})$ (3) $(\frac{3}{4},-\frac{3}{2})$ (4) $(\frac{3}{2},-\frac{3}{4})$ (5) $(6,-3)$.

【解答】 4

【解析】 設
$$P(x,y)$$
, $\overrightarrow{PA} + 2\overrightarrow{PB} + \overrightarrow{PC} = (-3 - x, 2 - y) + 2(1 - x, -1 - y) + (7 - x, -3 - y)$
= $(6 - 4x, -3 - 4y) = (0,0)$, $(x,y) = (\frac{3}{2}, -\frac{3}{4})$

() 5. 設在平面上若 \overrightarrow{OA} = (x,5) , \overrightarrow{OB} = (2,3) , \overrightarrow{OC} = (8,x) (x < 0)且A,B,C 三點共線,則x 的值爲 (1) -1 (2) -2 (3) -3 (4) -4 (5) -5 .

【解答】 1

【解析】
$$\overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA} = (2 - x, -2)$$
, $\overrightarrow{AC} = \overrightarrow{OC} - \overrightarrow{OA} = (8 - x, x - 5)$
 $A, B, C =$ 點共線 $\Leftrightarrow \overrightarrow{AB} / \overrightarrow{AC} \Leftrightarrow \overrightarrow{AB} = k \overrightarrow{AC}$
即 $\frac{2 - x}{8 - x} = \frac{-2}{x - 5} \Rightarrow (2 - x)(x - 5) = -2(8 - x) \Rightarrow x^2 - 5x - 6 = 0$
 $\Rightarrow (x - 6)(x + 1) = 0 \Rightarrow x = -1$, 6 (不合 $\therefore x < 0$)

二、填充題 (每題 10 分)

1. 平面上之向量
$$\overrightarrow{a} = (2,-3)$$
 , $\overrightarrow{b} = (-1,2)$, 若 $5\overrightarrow{u} - 3\overrightarrow{v} = -2\overrightarrow{a}$, $2\overrightarrow{u} - \overrightarrow{v} = \overrightarrow{b}$, 則 $\overrightarrow{u} + \overrightarrow{v} = \underline{\qquad}$.

$$\overrightarrow{u} + \overrightarrow{v} = 6\overrightarrow{a} + 8\overrightarrow{b} = (12, -18) + (-8, 16) = (4, -2)$$

2. △ *ABC* 中, *A*(0,3) , *B*(−1,−1) , *C*(−2,4) , 則△ *ABC* 之重心坐標爲_______

【解析】 重心爲
$$(\frac{0+(-1)+(-2)}{3},\frac{3+(-1)+4}{3})=(-1,2)$$

3. 設 $\overrightarrow{a} = (x + y - 2, 3x + y - 1)$, $\overrightarrow{b} = (2x + 3y, x - 2y + 1)$, 若 $\overrightarrow{a} = \overrightarrow{b}$, 則數對(x, y) =______.

【解析】
$$(x+y-2,3x+y-1) = (2x+3y,x-2y+1)$$

$$\Rightarrow \begin{cases} x+y-2 = 2x+3y \\ 3x+y-1 = x-2y+1 \end{cases} \Rightarrow x = 10, y = -6, \therefore (x,y) = (10,-6)$$

4.
$$\overrightarrow{b} = (1,-1)$$
, $\overrightarrow{b} = (-2,3) \perp 2(\overrightarrow{x} + 3\overrightarrow{b} - \overrightarrow{a}) + 3(\overrightarrow{x} + 2\overrightarrow{a} - \overrightarrow{b}) = 4(3\overrightarrow{b} + 2\overrightarrow{a}) - 5\overrightarrow{x}$, $y = 0$

$$\vec{x} =$$
[[[[[Kare]]] $(-\frac{7}{5}, \frac{23}{10})$

【解析】
$$2(\overline{x}+3\overline{b}-\overline{a})+3(\overline{x}+2\overline{a}-\overline{b})=4(3\overline{b}+2\overline{a})-5\overline{x}$$

⇒ $2\overline{x}+6\overline{b}-2\overline{a}+3\overline{x}+6\overline{a}-3\overline{b}=12\overline{b}+8\overline{a}-5\overline{x}$
⇒ $10\overline{x}=9\overline{b}+4\overline{a}=9(-2,3)+4(1,-1)=(-14,23)$ ⇒ $\overline{x}=(-\frac{7}{5},\frac{23}{10})$

5. 設 $\overrightarrow{a} = (1+3t,4+t)$, $\overrightarrow{b} = (5,-2)$, 已知 $\overrightarrow{a}//\overrightarrow{b}$, 求實數 $t = \underline{\hspace{1cm}}$.

【解析】
$$\overrightarrow{a}//\overrightarrow{b}$$
 \Rightarrow $\frac{1+3t}{5} = -\frac{4+t}{2}$ \Rightarrow $-2-6t = 20+5t$ \Rightarrow $-11t = 22$ \Rightarrow $t = -2$

6. 設 $\overrightarrow{a} = (4, 1)$, $\overrightarrow{b} = (3, 5)$, t 爲實數, 已知 $(\overrightarrow{a} - t\overrightarrow{b}) \bot \overrightarrow{b}$, 求t之值.

【解答】
$$t = \frac{1}{2}$$

【解析】
$$\overrightarrow{a} - t \overrightarrow{b} = (4 - 3t, 1 - 5t)$$
,

$$(\overrightarrow{a}-t\overrightarrow{b})\cdot\overrightarrow{b}=3(4-3t)+5(1-5t)=0$$
 \rightleftarrows , $t=\frac{1}{2}$.

7. 設O(0,0), A(2,1), B(-1,-2), C(-1,0), $x \in \mathbb{R}$, 若

$$(x^2 - 3x + 2)\overrightarrow{OA} + (x - 1)\overrightarrow{OB} + (x^2 - 2x + 1)\overrightarrow{OC} = \overrightarrow{0}$$
,則 x 之值爲______. (有兩解)

【解答】 1或4

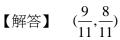
【解析】
$$\overrightarrow{OA} = (2,1)$$
 , $\overrightarrow{OB} = (-1,-2)$, $\overrightarrow{OC} = (-1,0)$
 $(x^2 - 3x + 2)\overrightarrow{OA} + (x - 1)\overrightarrow{OB} + (x^2 - 2x + 1)\overrightarrow{OC} = \overrightarrow{0}$

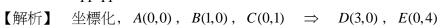
$$\Rightarrow$$
 $(2x^2 - 6x + 4 - x + 1 - x^2 + 2x - 1, x^2 - 3x + 2 - 2x + 2 + 0) = 0$

$$\Rightarrow$$
 $(x^2 - 5x + 4, x^2 - 5x + 4) = (0,0)$

$$\therefore$$
 $x^2 - 5x + 4 = 0 \Rightarrow (x - 1)(x - 4) = 0 \Rightarrow x = 1 \not\equiv 4$

8. 於 $\triangle ABC$ 中,延長 \overrightarrow{AB} 使 $\overrightarrow{AD} = 3\overrightarrow{AB}$,延長 \overrightarrow{AC} 使 $\overrightarrow{AE} = 4\overrightarrow{AC}$, \overrightarrow{CD} 與 \overrightarrow{BE} 相 交於P,若 $\overrightarrow{AP} = x\overrightarrow{AB} + y\overrightarrow{AC}$,則(x,y) =_______.





$$\overrightarrow{CD}: \frac{x}{3} + \frac{y}{1} = 1 \implies x + 3y = 3$$

$$\overrightarrow{BE}: \frac{x}{1} + \frac{y}{4} = 1 \implies 4x + y = 4$$

解之得
$$x = \frac{9}{11}$$
, $y = \frac{8}{11}$, 即 $\overrightarrow{AP} = (\frac{9}{11}, \frac{8}{11}) = \frac{9}{11}(1,0) + \frac{8}{11}(0,1) = \frac{9}{11}\overrightarrow{AB} + \frac{8}{11}\overrightarrow{AC}$

【解答】 (5,7)

【解析】
$$D(\frac{1}{3}, \frac{2}{3})$$
 , $E(\frac{11}{3}, \frac{4}{3})$, 設 $F(x, y)$, 重心 $G(3, 3)$
$$\frac{\frac{1}{3} + \frac{11}{3} + x}{3} = 3 \pm \frac{\frac{2}{3} + \frac{4}{3} + y}{3} = 3 \Rightarrow F(x, y) = (5, 7)$$

10. 設A(-2,5), B(4,3), P在直線AB上且 \overline{AP} : \overline{PB} =1:2, 則P之坐標爲_____. (兩解)

【解答】
$$(0,\frac{13}{3})$$
 或 $(-8,7)$

【解析】

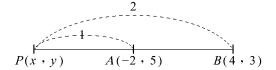
設
$$P(x, y)$$

①若
$$P$$
 為內分點, $\overline{AP}: \overline{PB} = 1:2$,則
$$\begin{cases} x = \frac{1 \times 4 + 2 \times (-2)}{3} = 0 \\ y = \frac{1 \times 3 + 2 \times 5}{3} = \frac{13}{3} \end{cases}$$

$$A(-2, 5) P(x, y) B(4, 3)$$

②若P爲外分點, \overline{AP} : \overline{PB} =1:2 則 \overline{AP} : \overline{AB} =1:1

$$\therefore \begin{cases} -2 = \frac{1 \times 4 + 1 \times x}{2} \\ 5 = \frac{1 \times 3 + 1 \times y}{2} \end{cases} \Rightarrow \begin{cases} x = -8 \\ y = 7 \end{cases}$$



∴ P 點坐標為 $(0,\frac{13}{3})$ 或(-8,7)

11. 設 \overrightarrow{a} = (1,1) , \overrightarrow{b} = (2,3) , \overrightarrow{c} = (-4,-7) ,存在實數r ,s 使得 \overrightarrow{c} = \overrightarrow{r} \overrightarrow{a} + s \overrightarrow{b} ,則數對 (r,s) = ______ .

【解答】 (2,-3)

【解析】
$$\overrightarrow{c} = r \overrightarrow{a} + s \overrightarrow{b}$$
 \Rightarrow $(-4,-7) = r(1,1) + s(2,3) = (r + 2s, r + 3s)$
$$\begin{cases} r + 2s = -4 \\ r + 3s = -7 \end{cases} \cdot \begin{cases} r = 2 \\ s = -3 \end{cases}$$

13. 若 A(3,2) , B(5,-1) , C(-1,4) , 已知 $2\overrightarrow{AB} = \overrightarrow{CD}$, 則 D 坐標爲 .

【解答】 (3,-2)

【解析】 設
$$D(x,y)$$
 ,則 $2\overrightarrow{AB} = 2(2,-3) = (4,-6)$, $\overrightarrow{CD} = (x+1,y-4)$
 $2\overrightarrow{AB} = \overrightarrow{CD} \Rightarrow (4,-6) = (x+1,y-4)$
 $\begin{cases} x+1=4 \\ y-4=-6 \end{cases} \Rightarrow \begin{cases} x=3 \\ y=-2 \end{cases}$,即 D 坐標爲 $(3,-2)$

14. 若 \overrightarrow{u} + \overrightarrow{v} =(2,3)且3 \overrightarrow{u} +2 \overrightarrow{v} =(-1,-2),求 \overrightarrow{u} =____. 與 \overrightarrow{v} =____.

【解答】
$$\vec{u} = (-5, -8)$$
 , $\vec{v} = (7, 11)$

15. 坐標平面上,A ,B ,C ,D 爲某平行四邊形的頂點,已知A(2, -7) ,

B(-3, 0),C(-4, 3),求D點的坐標.______.(三解)

【解答】 (1) D(1, -4); (2) D(3, -10); (3) D(-9, 10)

【解析】

A , B , C 三點固定時,點D 有三個可能位置使A , B , C , D 形成平行四邊形.

- (1) 平行四邊形 ABCD 時, D(1, -4).
- (2) 平行四邊形 ACBD 時, D(3, -10).
- (3) 平行四邊形 ABDC 時, D(-9, 10)