3 1

3-1三角函數的圖形

例題1

(1) 將下列各角化為以弧度為單位:

 $\bigcirc 54^{\circ}$.

 $(2)-120^{\circ}$.

(2) 將下列各角化為以度為單位:

①
$$\frac{11\pi}{12}$$
.

(2)-3.

解:₍₁₎ ① $54^{\circ} = 54 \times \frac{\pi}{180} = \frac{3\pi}{10}$ (弧度)

②
$$-120^{\circ} = (-120) \times \frac{\pi}{180} = -\frac{2\pi}{3} ($$
 弧度 $)$

②-3 (弧度) =
$$(-3) \times \frac{180^{\circ}}{\pi} = -\frac{540^{\circ}}{\pi}$$

例題 2

試求 $\sin \frac{\pi}{3} + \cos \frac{7\pi}{6} + \tan(-\frac{5\pi}{3}) =$ ______.

解: 原式= $\frac{\sqrt{3}}{2}$ - $\frac{\sqrt{3}}{2}$ + $\sqrt{3}$ = $\sqrt{3}$

例題3

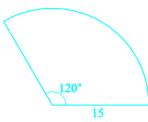
- (1) 一扇形的半徑為 15 公分,圓心角為 120°,則扇形的弧長為____公分,面積為____平方公分。
- (2) 已知圓 O 的半徑為 10 , \widehat{AB} 的弧長為 $\frac{5\pi}{4}$, 則 $\angle AOB$ 的弧度為 ________ , 扇形 OAB 的面積為 _______ .

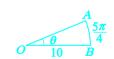
解: (1) 圓心角爲
$$120^\circ = 120 \times \frac{\pi}{180} = \frac{2\pi}{3}$$

弧長=
$$15 \times \frac{2\pi}{3} = 10\pi$$
 (公分)

面積=
$$\frac{1}{2}$$
×15²× $\frac{2\pi}{3}$ =75 π (平方公分)

(2) 設 $\angle AOB = \theta$ (弧度)





$$\therefore \widehat{AB}$$
 的長= $r\theta$ $\therefore 10\theta = \frac{5\pi}{4}$ $\Rightarrow \theta = \frac{\pi}{8}$ (弧度)

扇形面積=
$$\frac{1}{2}r^2\theta = \frac{1}{2} \times 10^2 \times \frac{\pi}{8} = \frac{25\pi}{4}$$

包裝七根半徑皆為1的圓柱,其截面如右圖所示,試問外圍粗黑線條的長度為_____。 [90.社會組]

解:如題圖所示

依次連結外圍六圓圓心,得一正六邊形,其內角爲 120° 分別自六圓圓心作外公切線之垂線,則所得扇形之圓心角爲 60°

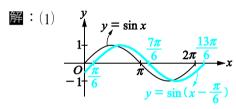
因此所求長度爲六條外公切線長加上六個 $\frac{1}{6}$ 圓周

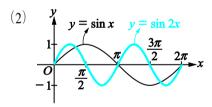
即
$$6 \times 2 + 6 \times \frac{2 \pi}{6} = 12 + 2 \pi$$

利用 y=sinx 的圖形,描繪出下列各函數的圖形,並求其週期:

$$(1) y = \sin(x - \frac{\pi}{6}) .$$

(2)
$$y = \sin 2x$$
.





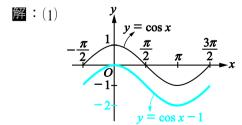
其週期爲 7

例題6

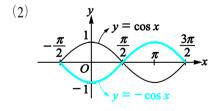
利用 y=cosx 的圖形,描繪出下列各函數的圖形,並求其週期:

(1)
$$y = \cos x - 1$$
.

(2)
$$y = -\cos x$$
.



其週期為2π

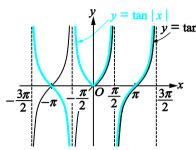


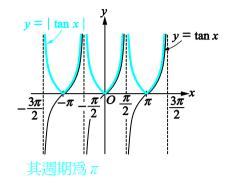
其週期爲 2π

(1) $y = \tan |x|$.

(2) $y = |\tan x|$.

- (2)
- **解**: (1) 當 $x \ge 0$ 時, $y = \tan |x| = \tan x$





 $y = \tan |x|$ 不是週期函數

例題8

設 $0 \le x \le \pi$,則方程式 $2\cos^2 x + \sin x - 2 = 0$ 之解為

 $\mathbf{F} : 2\cos^2 x + \sin x - 2 = 0$

- $\Rightarrow 2(1-\sin^2 x) + \sin x 2 = 0$
- \Rightarrow $-2 \sin^2 x + \sin x = 0$
- $\Rightarrow \sin x (1-2\sin x) = 0$
- $\Rightarrow \sin x = 0 \not\equiv \sin x = \frac{1}{2}$

故方程式之解爲x=0, π , $\frac{\pi}{6}$, $\frac{5\pi}{6}$

例題9

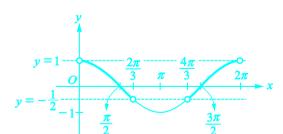
設 $0 \le x < 2\pi$,則不等式 $\cos x + 2 \sin^2 x > 1$ 之解為

$$\mathbf{ff}: \cos x + 2\sin^2 x > 1$$

$$\Rightarrow \cos x + 2 - 2\cos^2 x > 1$$

$$\Rightarrow$$
 $(\cos x - 1)$ $(2\cos x + 1)$ < 0

$$\Rightarrow -\frac{1}{2} < \cos x < 1$$



3-2和 鱼 公式

例題1

試求下列各式之值:

- (1) $\sin 13^{\circ} \cos 107^{\circ} + \cos 13^{\circ} \sin 107^{\circ}$.
- (2) $\sin 200^{\circ} \cos 280^{\circ} \sin 100^{\circ} \cos 160^{\circ}$.
- (3) $\cos(28^{\circ} + \theta) \cos(32^{\circ} \theta) \sin(28^{\circ} + \theta) \sin(32^{\circ} \theta)$.

(1) 原式=
$$\sin(13^{\circ}+107^{\circ}) = \sin 120^{\circ} = \frac{\sqrt{3}}{2}$$

(2) 原式=
$$(-\sin 20^\circ)$$
 $(\cos 80^\circ)$ $(\sin 80^\circ)$ $(-\cos 20^\circ)$

$$=\sin 80^{\circ}\cos 20^{\circ}-\cos 80^{\circ}\sin 20^{\circ}=\sin (80^{\circ}-20^{\circ})=\sin 60^{\circ}=\frac{\sqrt{3}}{2}$$

(3) 原式=
$$\cos((28^{\circ}+\theta) + (32^{\circ}-\theta)) = \cos 60^{\circ} = \frac{1}{2}$$

例題 2

若已知
$$\frac{\pi}{2}$$
< α < π 且 $\sin \alpha = \frac{13}{14}$, $\frac{3\pi}{2}$ < β < 2π 且 $\sin \beta = -\frac{11}{14}$,則:

$$(1) \cos(\alpha + \beta) = \underline{\hspace{1cm}}.$$

(2)
$$\alpha + \beta =$$
_____.

$$\mathbf{m}: \because \frac{\pi}{2} < \alpha < \pi \perp \sin \alpha = \frac{13}{14} \quad \therefore \cos \alpha = \frac{-3\sqrt{3}}{14}$$

$$\overline{\chi} \frac{3\pi}{2} < \beta < 2\pi \underline{\exists} \sin \beta = -\frac{11}{14} \quad \therefore \cos \beta = \frac{5\sqrt{3}}{14}$$

(1)
$$\cos(\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta$$

$$= \left(-\frac{3\sqrt{3}}{14}\right) \left(\frac{5\sqrt{3}}{14}\right) - \frac{13}{14} \times \left(-\frac{11}{14}\right) = \frac{98}{196} = \frac{1}{2}$$

(2)
$$\therefore \frac{\pi}{2} < \alpha < \pi$$
, $\frac{3\pi}{2} < \beta < 2\pi \Rightarrow 2\pi < \alpha + \beta < 3\pi$
 $\not \subset \cos(\alpha + \beta) = \frac{1}{2}$, $\not \boxtimes \alpha + \beta = \frac{7\pi}{3}$

例題3

$$\triangle ABC$$
 中,若 $\cos A = \frac{12}{13}$, $\cos B = \frac{4}{5}$,則 $\cos C = \underline{\hspace{1cm}}$.

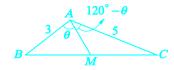
故
$$\cos C = \cos(\pi - (A+B)) = -\cos(A+B) = -(\cos A \cos B - \sin A \sin B)$$

= $-(\frac{12}{13} \times \frac{4}{5} - \frac{5}{13} \times \frac{3}{5}) = -\frac{48 - 15}{65} = -\frac{33}{65}$

例題 4

解:如右圖,令 $\angle BAM = \theta$ $\Rightarrow \angle MAC = 120^{\circ} - \theta$

 $\therefore M \not \subseteq \overline{BC}$ 邊之中點 $\therefore \triangle ABM$ 面積 = $\triangle ACM$ 面積



$$\Rightarrow \frac{1}{2} \times 3 \times \bar{A} \bar{M} \times \sin \theta = \frac{1}{2} \times 5 \times \bar{A} \bar{M} \times \sin (120^{\circ} - \theta)$$

$$\Rightarrow$$
 3 sin θ =5 sin (120° $-\theta$)

$$\Rightarrow 3\sin\theta = 5\left(\sin 120^{\circ}\cos\theta - \cos 120^{\circ}\sin\theta\right) = \frac{5}{2}\sqrt{3}\cos\theta + \frac{5}{2}\sin\theta$$

$$\Rightarrow \frac{1}{2}\sin\theta = \frac{5}{2}\sqrt{3}\cos\theta \Rightarrow \tan\theta = \frac{\sin\theta}{\cos\theta} = 5\sqrt{3}$$

例題5

試求下列各式之值:

(1)
$$\frac{\tan 59^{\circ} - \tan 29^{\circ}}{1 + \tan 59^{\circ} \tan 29^{\circ}} = \underline{\hspace{1cm}} (2) \tan 13^{\circ} + \tan 32^{\circ} + \tan 13^{\circ} \tan 32^{\circ} = \underline{\hspace{1cm}} .$$

$$\mathbf{m}: (1) \frac{\tan 59^{\circ} - \tan 29^{\circ}}{1 + \tan 59^{\circ} \tan 29^{\circ}} = \tan (59^{\circ} - 29^{\circ}) = \tan 30^{\circ} = \frac{\sqrt{3}}{3}$$

(2)
$$\therefore \tan 45^{\circ} = \tan (13^{\circ} + 32^{\circ})$$
 $\therefore 1 = \frac{\tan 13^{\circ} + \tan 32^{\circ}}{1 - \tan 13^{\circ} \tan 32^{\circ}}$

$$\Rightarrow 1 - \tan 13^{\circ} \tan 32^{\circ} = \tan 13^{\circ} + \tan 32^{\circ}$$

$$\Rightarrow \tan 13^{\circ} + \tan 32^{\circ} + \tan 13^{\circ} \tan 32^{\circ} = 1$$

例題6

(1) 若
$$\tan \alpha = 2$$
 , $\tan (\alpha - \beta) = \frac{1}{2}$, 則 $\tan \beta = \underline{\hspace{1cm}}$.

(2) 若
$$\alpha + \beta = \frac{3\pi}{4}$$
,則 $(1 - \tan \alpha) (1 - \tan \beta) = \underline{\hspace{1cm}}$.

$$\mathbf{P}: (1) : \tan(\alpha - \beta) = \frac{\tan \alpha - \tan \beta}{1 + \tan \alpha \tan \beta} \Rightarrow \frac{2 - \tan \beta}{1 + 2 \tan \beta} = \frac{1}{2}$$

$$\Rightarrow 4-2\tan\beta = 1+2\tan\beta \Rightarrow \tan\beta = \frac{3}{4}$$

(2)
$$\therefore \alpha + \beta = \frac{3\pi}{4}$$
 $\therefore \tan(\alpha + \beta) = \tan \frac{3\pi}{4}$

$$\Rightarrow \frac{\tan \alpha + \tan \beta}{1 - \tan \alpha \tan \beta} = -1 \Rightarrow \tan \alpha + \tan \beta = -1 + \tan \alpha \tan \beta$$

$$\Rightarrow \tan \alpha \ \tan \beta - \tan \alpha - \tan \beta = 1$$

如右圖,三正方形的邊長皆為4,則 $an eta = _______.$

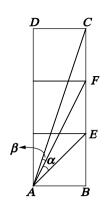
解:在 $\triangle ABF$ 中, $\tan(\alpha+45^\circ)=\frac{8}{4}=2$

在
$$\triangle ABC$$
中, $\tan(\alpha+\beta+45^{\circ})=\frac{12}{4}=3$

$$\tan \beta = \tan \left(\left(\alpha + \beta + 45^{\circ} \right) - \left(\alpha + 45^{\circ} \right) \right)$$

$$\tan \left(\alpha + \beta + 45^{\circ} \right) - \tan \left(\alpha + 45^{\circ} \right)$$
3-2

$$= \frac{\tan(\alpha + \beta + 45^{\circ}) - \tan(\alpha + 45^{\circ})}{1 + \tan(\alpha + \beta + 45^{\circ}) \tan(\alpha + 45^{\circ})} = \frac{3 - 2}{1 + 3 \times 2} = \frac{1}{7}$$



例題8

設 $\tan \alpha$, $\tan \beta$ 為方程式 $x^2 + 6x + 2 = 0$ 之雨根 , 則:

 $(1) \tan(\alpha + \beta) = \underline{\hspace{1cm}}.$

(2) $\cos^2(\alpha + \beta) =$ _____.

(3) $2\sin^2(\alpha+\beta) - \sin(\alpha+\beta)\cos(\alpha+\beta) + 8\cos^2(\alpha+\beta) =$

解:(1) 由根與係數的關係知 $\tan \alpha + \tan \beta = -6$, $\tan \alpha \tan \beta = 2$

$$\Rightarrow \tan(\alpha + \beta) = \frac{\tan\alpha + \tan\beta}{1 - \tan\alpha \tan\beta} = \frac{-6}{1 - 2} = 6$$

(2)
$$\cos^2(\alpha + \beta) = \frac{1}{\sec^2(\alpha + \beta)} = \frac{1}{1 + \tan^2(\alpha + \beta)} = \frac{1}{1 + 6^2} = \frac{1}{37}$$

(3) 原式= $\cos^2(\alpha+\beta)$ [$2\tan^2(\alpha+\beta)$ $-\tan(\alpha+\beta)$ +8]

$$=\frac{1}{37}$$
x $(2x6^2-6+8) = \frac{1}{37}$ x74=2

例題9

設兩直線 $L_1: x+\sqrt{3}y-3=0$ 與 $L_2: \sqrt{3}x+y-8=0$ 之交角為 θ , 則 $\theta=$

 \mathbf{m} : L_1 之斜率為 $\frac{-1}{\sqrt{3}}$, L_2 之斜率為 $-\sqrt{3}$

$$\therefore \tan \theta = \frac{(-\frac{1}{\sqrt{3}}) - (-\sqrt{3})}{1 + (-\frac{1}{\sqrt{3}}) (-\sqrt{3})} = \frac{\frac{2}{\sqrt{3}}}{2} = \frac{1}{\sqrt{3}} \Rightarrow \theta = \frac{\pi}{6}, \ \text{另一交角爲} \pi - \frac{\pi}{6} = \frac{5\pi}{6}$$

故 L_1 與 L_2 之交角 θ 爲 $\frac{\pi}{6}$ 或 $\frac{5\pi}{6}$

試求下列各式之值:

- $(1) \sin^2 172.5^{\circ} \sin^2 127.5^{\circ} = \underline{\hspace{1cm}} .$
- (2) $\cos^2 127.5^\circ \sin^2 7.5^\circ =$

 \mathbf{m} : (1) $\sin^2 172.5^\circ - \sin^2 127.5^\circ = \sin(172.5^\circ + 127.5^\circ) \sin(172.5^\circ - 127.5^\circ)$

$$=\sin 300^{\circ} \sin 45^{\circ} = (-\frac{\sqrt{3}}{2}) (\frac{\sqrt{2}}{2}) = -\frac{\sqrt{6}}{4}$$

(2) $\cos^2 127.5^\circ - \sin^2 7.5^\circ = \cos(127.5^\circ + 7.5^\circ) \cos(127.5^\circ - 7.5^\circ)$

$$=\cos 135^{\circ}\cos 120^{\circ} = \left(-\frac{\sqrt{2}}{2}\right) \left(-\frac{1}{2}\right) = \frac{\sqrt{2}}{4}$$

例題 11

 $\mathbf{m} : \cos^2 x - \cos^2 y = \sin(y + x) \sin(y - x) = \sin\frac{\pi}{3}\sin(y - x) = \frac{\sqrt{3}}{2}\sin(y - x)$

$$\therefore -1 \leq \sin(y-x) \leq 1$$

$$\therefore -\frac{\sqrt{3}}{2} \le \frac{\sqrt{3}}{2} \sin(y-x) \le \frac{\sqrt{3}}{2}$$

 $\therefore \cos^2 x - \cos^2 y$ 之最大值為 $\frac{\sqrt{3}}{2}$,最小值為 $-\frac{\sqrt{3}}{2}$

3-3倍角與半角公式

例題1

若 $\sin\theta$ 為方程式 $10x^2+x-3=0$ 之一根,且 $\pi < \theta < \frac{3\pi}{2}$,則:

(1)
$$\sin 2\theta =$$
_____.

$$(2) \sin \frac{\theta}{2} = \underline{\hspace{1cm}}.$$

$$\mathbb{Z}$$
: $\pi < \theta < \frac{3\pi}{2}$: $-1 < \sin\theta < 0$: $\sin\theta = -\frac{3}{5} \Rightarrow \cos\theta = -\frac{4}{5}$

(1)
$$\sin 2\theta = 2 \sin \theta \cos \theta = 2 \times \left(-\frac{3}{5} \right) \times \left(-\frac{4}{5} \right) = \frac{24}{25}$$

$$(2) :: \pi < \theta < \frac{3\pi}{2} \Rightarrow \frac{\pi}{2} < \frac{\theta}{2} < \frac{3\pi}{4}$$

$$\therefore \sin \frac{\theta}{2} = \sqrt{\frac{1 - \cos \theta}{2}} = \sqrt{\frac{1 - (-\frac{4}{5})}{2}} = \sqrt{\frac{9}{10}} = \frac{3}{\sqrt{10}}$$

例題 2

設 $\frac{\pi}{2} < \theta < \pi$ 且 $\sin \theta = \frac{5}{13}$,則:

(1)
$$\sin 2\theta =$$
 (2) $\cos 2\theta =$.

(2)
$$\cos 2\theta =$$

(3)
$$\tan 2\theta = \underline{\hspace{1cm}}$$
.

(4)
$$\sin \frac{\theta}{2} = \underline{\qquad}$$
 (5) $\cos \frac{\theta}{2} = \underline{\qquad}$ (6) $\tan \frac{\theta}{2} = \underline{\qquad}$

$$(5) \cos \frac{\theta}{2} = \underline{\qquad}$$

(6)
$$\tan \frac{\theta}{2} = \underline{\hspace{1cm}}$$

$$\mathbf{m} : : \sin\theta = \frac{5}{13} \underline{\mathbb{H}} \frac{\pi}{2} < \theta < \pi \Rightarrow \cos\theta = -\frac{12}{13}, \tan\theta = -\frac{5}{12}$$

(1)
$$\sin 2\theta = 2 \sin \theta \cos \theta = 2 \times \frac{5}{13} \times (-\frac{12}{13}) = -\frac{120}{169}$$

(2)
$$\cos 2\theta = 1 - 2 \sin^2 \theta = 1 - 2 \times (\frac{5}{13})^2 = \frac{119}{169}$$

(3)
$$\tan 2\theta = \frac{2 \tan \theta}{1 - \tan^2 \theta} = \frac{2 \times (-\frac{5}{12})}{1 - (-\frac{5}{12})^2} = \frac{-\frac{5}{6}}{\frac{119}{144}} = -\frac{120}{119}$$

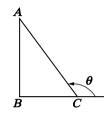
$$\overline{\mathbb{Z}} : \frac{\pi}{2} < \theta < \pi \quad \therefore \frac{\pi}{4} < \frac{\theta}{2} < \frac{\pi}{2}$$

(4)
$$\sin\frac{\theta}{2} = \sqrt{\frac{1 - \cos\theta}{2}} = \sqrt{\frac{1 - (-\frac{12}{13})}{2}} = \sqrt{\frac{25}{26}} = \frac{5}{\sqrt{26}}$$

(5)
$$\cos \frac{\theta}{2} = \sqrt{\frac{1 + \cos \theta}{2}} = \sqrt{\frac{1 + (-\frac{12}{13})}{2}} = \sqrt{\frac{1}{26}} = \frac{1}{\sqrt{26}}$$

(6)
$$\tan \frac{\theta}{2} = \frac{\sin \frac{\theta}{2}}{\cos \frac{\theta}{2}} = \frac{\frac{5}{\sqrt{26}}}{\frac{1}{\sqrt{26}}} = 5$$

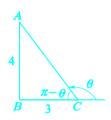
如右圖, θ 為一個有向角, $\bar{A}\bar{B}=4$, $\bar{B}\bar{C}=3$, $\bar{A}\bar{B}\perp\bar{B}\bar{C}$,則 $\cos\frac{\theta}{2}=$ _____.



M:
$$\bar{A}\bar{C} = \sqrt{3^2 + 4^2} = 5 \Rightarrow \cos\theta = -\cos(\pi - \theta) = -\frac{3}{5}$$

$$\nearrow 0 < \theta < \pi \Rightarrow 0 < \frac{\theta}{2} < \frac{\pi}{2}$$

$$\therefore \cos\frac{\theta}{2} = \sqrt{\frac{1+\cos\theta}{2}} = \sqrt{\frac{1+(-\frac{3}{5})}{2}} = \frac{1}{\sqrt{5}}$$



例題 4

(1)
$$\sin\theta - \cos\theta = \frac{1}{3}$$
 ,則 $\sin 2\theta =$ ______ •

(2) 若
$$\sin 2\theta = -\frac{3}{5}$$
,則 $\sin^4 \theta + \cos^4 \theta =$ _____.

解:
$$(1)$$
 : $\sin\theta - \cos\theta = \frac{1}{3}$, 平方得 $(\sin\theta - \cos\theta)^2 = \frac{1}{9}$

$$\Rightarrow 1 - 2\sin\theta\cos\theta = \frac{1}{9} \Rightarrow 1 - \sin2\theta = \frac{1}{9} \Rightarrow \sin2\theta = \frac{8}{9}$$

(2)
$$\sin^4\theta + \cos^4\theta = (\sin^2\theta + \cos^2\theta)^2 - 2\sin^2\theta\cos^2\theta$$

$$=1-\frac{1}{2}(2\sin\theta\cos\theta)^2=1-\frac{1}{2}(\sin2\theta)^2=1-\frac{1}{2}\times(-\frac{3}{5})^2=\frac{41}{50}$$

例題 5

試求
$$\cos \frac{\pi}{7} \cos \frac{2\pi}{7} \cos \frac{4\pi}{7} =$$
_____.

$$\mathbf{P} : \frac{\pi}{7} P = \cos \frac{\pi}{7} \cos \frac{2\pi}{7} \cos \frac{4\pi}{7}$$

$$8 \sin \frac{\pi}{7} \times P = 8 \sin \frac{\pi}{7} \cos \frac{\pi}{7} \cos \frac{2\pi}{7} \cos \frac{4\pi}{7}$$

$$= 4 \sin \frac{2\pi}{7} \cos \frac{2\pi}{7} \cos \frac{4\pi}{7} = 2 \sin \frac{4\pi}{7} \cos \frac{4\pi}{7}$$
$$= \sin \frac{8\pi}{7} = -\sin \frac{\pi}{7}$$

$$\therefore 8P = -1 \Rightarrow P = -\frac{1}{8}$$

亦即
$$\cos \frac{\pi}{7} \cos \frac{2\pi}{7} \cos \frac{4\pi}{7} = -\frac{1}{8}$$

試求
$$\frac{\sin 3\theta}{\sin \theta} - \frac{\cos 3\theta}{\cos \theta} =$$
______.

爾: 原式=
$$\frac{3\sin\theta - 4\sin^3\theta}{\sin\theta} - \frac{4\cos^3\theta - 3\cos\theta}{\cos\theta}$$

= $(3-4\sin^2\theta) - (4\cos^2\theta - 3) = 3+3-4(\sin^2\theta + \cos^2\theta) = 3+3-4=2$

例題 7

若
$$\sin\theta - \cos\theta = \frac{1}{3}$$
,則 $\sin 3\theta + \cos 3\theta = \underline{\hspace{1cm}}$.

2 :
$$\sin\theta - \cos\theta = \frac{1}{3}$$
,平方得 $1 - 2\sin\theta\cos\theta = \frac{1}{9}$ \Rightarrow $\sin\theta\cos\theta = \frac{4}{9}$

例題 8

設
$$f(x) = 8x^3 + 4x^2 - 6x - 2$$
,則以 $x - \sin 15$ °除 $f(x)$ 之餘式為______.

解:由餘式定理知

餘式 =
$$f(\sin 15^\circ) = 8 \sin^3 15^\circ + 4 \sin^2 15^\circ - 6 \sin 15^\circ - 2$$

= $2(4 \sin^3 15^\circ - 3 \sin 15^\circ) + 2(2 \sin^2 15^\circ - 1)$
= $-2(3 \sin 15^\circ - 4 \sin^3 15^\circ) - 2(1 - 2 \sin^2 15^\circ)$
= $-2 \times \sin 45^\circ - 2 \times \cos 30^\circ$
= $-2 \times \frac{\sqrt{2}}{2} - 2 \times \frac{\sqrt{3}}{2} = -\sqrt{2} - \sqrt{3}$

 $k \in \mathbb{R}$,若方程式 $3x^2 + kx + 1 = 0$ 之兩根為 $\sin \theta$, $\cos \theta$,則 $\cos 4\theta =$ _______.

解: $3x^2+kx+1=0$ 之兩根爲 $\sin\theta$, $\cos\theta$ \Rightarrow $\sin\theta$ $\cos\theta = \frac{1}{3}$

$$\Rightarrow \sin 2\theta = 2\sin\theta\cos\theta = \frac{2}{3}$$

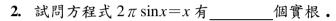
$$\cos 4\theta = 1 - 2(\sin 2\theta)^2 = 1 - 2x \frac{4}{9} = \frac{1}{9}$$

Chap3

- 1. 如右圖,圓的半徑為6,∠AOB=60°,則:
 - (1) \widehat{AB} 的長為_____.
 - (2) 斜線部分的面積為 .

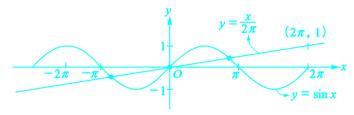
- \mathbf{m} : (1) \widehat{AB} 的長= $r\theta$ = $6\times\frac{\pi}{2}$ = 2π
 - (2) 斜線部分的面積= (扇形 AOB 的面積) $(\triangle OAB$ 的面積)

$$= \frac{1}{2} \times 6^2 \times \frac{\pi}{3} - \frac{1}{2} \times 6^2 \times \sin \frac{\pi}{3} = 6 \pi - 9\sqrt{3}$$



 $\mathbf{M}: 2\pi \sin x = x$ 的實根個數,即為

 $y = \sin x$ 與 $y = \frac{x}{2\pi}$ 兩圖形的交點個數



由上圖知,有3個交點,亦即有3個實根

- 3. 已知 $\frac{3\pi}{2}$ <x< 2π ,且 $4\sin^2 x$ - $5\cos x$ +2=0,則:
 - (1) tan x =______.

 $(2) \tan 2x =$

 \mathbf{m} : $4\sin^2 x - 5\cos x + 2 = 0$

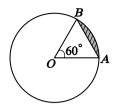
$$\Rightarrow 4-4\cos^2 x - 5\cos x + 2 = 0$$

$$\Rightarrow 4\cos^2 x + 5\cos x - 6 = 0$$

$$\diamondsuit (4\cos x - 3) (\cos x + 2) = 0 \Leftrightarrow \cos x = \frac{3}{4} 戴 - 2 (不合)$$

(1)
$$\therefore \frac{3\pi}{2} < x < 2\pi \qquad \therefore \tan x = -\frac{\sqrt{7}}{3}$$

(2)
$$\tan 2x = \frac{2 \tan x}{1 - \tan^2 x} = \frac{2x \left(-\frac{\sqrt{7}}{3}\right)}{1 - \left(-\frac{\sqrt{7}}{3}\right)^2} = \frac{-\frac{2\sqrt{7}}{3}}{\frac{2}{9}} = -3\sqrt{7}$$



- $\Rightarrow 2 \sin x \cos x \sin x = 0$
- $\Rightarrow \sin x (2\cos x 1) = 0$
- $\Rightarrow \sin x = 0 \not\equiv \cos x = \frac{1}{2}$
- 當 $\cos x = \frac{1}{2}$ 且 $0 < x < \pi$ $\therefore x = \frac{\pi}{3}$ $\Rightarrow y = \sin \frac{\pi}{3} = \frac{\sqrt{3}}{2}$

亦即交點坐標爲 $(\frac{\pi}{3}, \frac{\sqrt{3}}{2})$

5. $\triangle ABC$ 是邊長為 5 的正三角形,P 點在三角形內部,若 \overline{PB} = 4 且 \overline{PC} = 3 ,則 $\cos \angle ABP$ = _______ . [98.指考甲]

由右圖知 $\cos\theta = \frac{4}{5}$, $\sin\theta = \frac{3}{5}$

$$\Rightarrow \cos \angle ABP = \cos (60^{\circ} - \theta)$$

 $=\cos 60^{\circ}\cos \theta + \sin 60^{\circ}\sin \theta$

$$= \frac{1}{2} \times \frac{4}{5} + \frac{\sqrt{3}}{2} \times \frac{3}{5} = \frac{4 + 3\sqrt{3}}{10}$$

