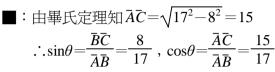
銳角的三角函數 2-1

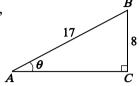
例題1

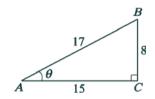
如右圖, $\triangle ABC$ 為直角三角形, $\angle C=90^{\circ}$, $\angle A=\theta$,又 $\bar{A}\bar{B}=17$, $\overline{BC}=8$, 求 θ 的六個三角函數值。



$$\tan\theta = \frac{\overline{B}\overline{C}}{\overline{A}\overline{C}} = \frac{8}{15}$$
, $\cot\theta = \frac{\overline{A}\overline{C}}{\overline{B}\overline{C}} = \frac{15}{8}$

$$\sec\theta = \frac{\bar{A}\bar{B}}{\bar{A}\bar{C}} = \frac{17}{15}$$
, $\csc\theta = \frac{\bar{A}\bar{B}}{\bar{B}\bar{C}} = \frac{17}{8}$





例題 2

試求下列各式之值:

- (1) $\sin 45^{\circ} \cos 60^{\circ} + \cos 45^{\circ} \sin 30^{\circ}$.
- (2) $\frac{\tan 60^{\circ} + \cot 45^{\circ}}{\tan 45^{\circ} \cot 30^{\circ}}$.
- (3) $\sin 30^{\circ} \cot 45^{\circ} \sec 60^{\circ} + \cos 30^{\circ} \tan 45^{\circ} \csc 60^{\circ}$.

■: (1) 原式=
$$\frac{\sqrt{2}}{2} \times \frac{1}{2} + \frac{\sqrt{2}}{2} \times \frac{1}{2} = \frac{\sqrt{2}}{2}$$

(2) 原式=
$$\frac{\sqrt{3}+1}{1-\sqrt{3}} = \frac{(\sqrt{3}+1)(1+\sqrt{3})}{(1-\sqrt{3})(1+\sqrt{3})} = \frac{4+2\sqrt{3}}{-2} = -2-\sqrt{3}$$

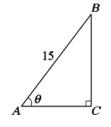
(3) 原式=
$$\frac{1}{2}$$
×1×2+ $\frac{\sqrt{3}}{2}$ ×1× $\frac{2}{\sqrt{3}}$ =1+1=2

例題3

在直角三角形 ABC 中, $\angle C=90^{\circ}$, $\angle A=\theta$,又 $\overline{AB}=15$,若 $\sin\theta=\frac{4}{5}$,則

$$\bar{B}\bar{C}=$$
 , $\bar{A}\bar{C}=$

$$\blacksquare : : \sin\theta = \frac{\bar{B}\bar{C}}{\bar{A}\bar{B}} = \frac{\bar{B}\bar{C}}{15} : : \bar{B}\bar{C} = 15 \sin\theta = 15 \times \frac{4}{5} = 12$$
$$\bar{A}\bar{C} = \sqrt{15^2 - 12^2} = 9$$



如右圖,在長方形ABCD中, $ar{A}ar{B}=6$, $ar{A}ar{D}=10$,若點P在 $ar{A}ar{D}$ 上 移動,但P點異於A,D 兩點,則 $an lpha + an eta = _$ ______



 \blacksquare : $\bar{\mathbb{R}} \bar{A} \bar{P} = x \Rightarrow \bar{P} \bar{D} = 10 - x$

故
$$\tan \alpha + \tan \beta = \frac{\overline{A}\overline{P}}{\overline{A}\overline{B}} + \frac{\overline{P}\overline{D}}{\overline{C}\overline{D}} = \frac{x}{6} + \frac{10 - x}{6} = \frac{10}{6} = \frac{5}{3}$$

例題5

如右圖,在 $\triangle ABC$ 中, $\bar{A}\bar{D}\perp \bar{B}\bar{C}$,若 $\bar{A}\bar{B}=25$, $\sin B=\frac{3}{5}$, $\tan C=\frac{15}{8}$,則:

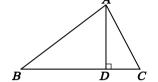
(1)
$$\bar{A}\bar{D}=$$

(2)
$$\bar{B}\bar{D}=$$

(3)
$$\bar{A}\bar{C}=$$

(4)
$$\overline{C}\overline{D}=$$
______.

 \blacksquare : (1)(2) 在直角 $\triangle ABD$ 中 $\therefore \bar{A}\bar{B}=25$, $\sin B=\frac{3}{5}$



 $\overline{\times} \sin B = \frac{AD}{AB} \Rightarrow \overline{A}\overline{D} = \overline{A}\overline{B} \cdot \sin B = 25 \times \frac{3}{5} = 15 \Rightarrow \overline{B}\overline{D} = \sqrt{25^2 - 15^2} = 20$

(3)(4) 在直角
$$\triangle ACD$$
 中 $\therefore \bar{A}\bar{D} = 15$, $\tan C = \frac{15}{8}$

$$\overline{\times} \tan C = \frac{\overline{A}\overline{D}}{\overline{C}\overline{D}} = \frac{15}{\overline{C}\overline{D}} \Leftrightarrow \overline{C}\overline{D} = 8 \Leftrightarrow \overline{A}\overline{C} = \sqrt{8^2 + 15^2} = 17$$

例題 6

設 $\angle A$ 為銳角,且 $4\cos^2 A - 12\cos A + 5 = 0$,則:

(1)
$$\angle A =$$
______.

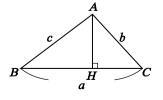
$$(2) \cot A + \csc A = \underline{\hspace{1cm}}$$

■ : (1) $4\cos^2 A - 12\cos A + 5 = 0$ \Rightarrow $(2\cos A - 5)(2\cos A - 1) = 0$

(2)
$$\cot A + \csc A = \cot 60^{\circ} + \csc 60^{\circ} = \frac{1}{\sqrt{3}} + \frac{2}{\sqrt{3}} = \frac{3}{\sqrt{3}} = \sqrt{3}$$

例題7

如右圖,設 $\triangle ABC$ 的三頂點A,B,C所對的邊長分別為a, b, c, $B\overline{C}$ 邊上的高為 \overline{AH} 且 $\angle B$ 與 $\angle C$ 皆為銳角,則 \overline{AH} 之 長為(複選)



2 高中數學(二)習作

(A) $a \sin A$ (B) $b \sin B$ (C) $c \sin C$ (D) $b \sin C$ (E) $c \sin B$.

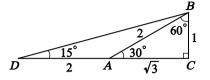
在直角三角形 ABH 中, $\sin B = \frac{\bar{A}\bar{H}}{c}$ $\Rightarrow \bar{A}\bar{H} = c \sin B$

在直角三角形 ACH 中, $\sin C = \frac{\bar{A}\bar{H}}{b}$ $\Rightarrow \bar{A}\bar{H} = b \sin C$

故選D(E)

例題8

我們可以依如下的方法作出 15° 角的三角函數值,先作 一個 $30\degree-60\degree-90\degree$ 的直角 $\triangle ABC$,如右圖所示,延長



 \overline{CA} 並在 \overline{CA} 上取 $\overline{AD} = \overline{AB}$, 連接 \overline{BD} , 則 $\angle D = 15^{\circ}$, 求:

(1)
$$\sin 15^{\circ} =$$
______ • (2) $\cos 15^{\circ} =$ _____ • (3) $\tan 15^{\circ} =$ _____ •

■:在△ABC中,設 $\bar{B}\bar{C}$ =1,則 $\bar{A}\bar{C}$ = $\sqrt{3}$, $\bar{A}\bar{B}$ =2= $\bar{A}\bar{D}$ \Rightarrow $\angle D$ = $\angle ADB$ =15° $\bar{B}\bar{D} = \sqrt{1^2 + (2 + \sqrt{3})^2} = \sqrt{8 + 4\sqrt{3}} = \sqrt{8 + 2\sqrt{12}} = \sqrt{6} + \sqrt{2}$

(1)
$$\sin 15^{\circ} = \frac{\bar{B}\bar{C}}{\bar{B}\bar{D}} = \frac{1}{\sqrt{6} + \sqrt{2}} = \frac{\sqrt{6} - \sqrt{2}}{4}$$

(2)
$$\cos 15^{\circ} = \frac{\bar{C}\bar{D}}{\bar{B}\bar{D}} = \frac{2+\sqrt{3}}{\sqrt{6}+\sqrt{2}} = \frac{\sqrt{6}+\sqrt{2}}{4}$$

(3)
$$\tan 15^{\circ} = \frac{\bar{B}\bar{C}}{\bar{C}\bar{D}} = \frac{1}{2 + \sqrt{3}} = 2 - \sqrt{3}$$

2-2 三角函數的基本關係

例題1

設 θ 為銳角,試化簡下列各式:

(1)
$$\frac{1}{1+\sin\theta} + \frac{1}{1+\cos\theta} + \frac{1}{1+\sec\theta} + \frac{1}{1+\csc\theta}$$
.

(2) $\sin\theta \cdot \cos\theta \cdot \tan\theta \cdot \cot\theta \cdot \sec\theta \cdot \csc\theta$.

■: (1) 原式 =
$$\frac{1}{1+\sin\theta} + \frac{1}{1+\cos\theta} + \frac{1}{1+\frac{1}{\cos\theta}} + \frac{1}{1+\frac{1}{\sin\theta}}$$

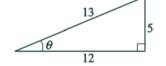
= $\frac{1}{1+\sin\theta} + \frac{1}{1+\cos\theta} + \frac{\cos\theta}{1+\cos\theta} + \frac{\sin\theta}{1+\sin\theta} = \frac{1+\sin\theta}{1+\sin\theta} + \frac{1+\cos\theta}{1+\cos\theta} = 2$

例題 2

設 θ 為銳角且 $12\sin\theta-5\cos\theta=0$,則 $\sin\theta-\cos\theta=$

$$\blacksquare$$
: $12 \sin\theta - 5 \cos\theta = 0 \Rightarrow 12 \sin\theta = 5 \cos\theta$

$$\Rightarrow \frac{\sin\theta}{\cos\theta} = \frac{5}{12} \Rightarrow \tan\theta = \frac{5}{12}$$



∴
$$\sin\theta = \frac{5}{13}$$
, $\cos\theta = \frac{12}{13}$, $\dot{\cos}\theta = \frac{5}{13} - \frac{12}{13} = -\frac{7}{13}$

(2) 原式= $(\sin\theta \cdot \csc\theta)(\cos\theta \cdot \sec\theta)(\tan\theta \cdot \cot\theta) = 1\times1\times1=1$

例題3

設 θ 為銳角,試化簡下列各式:

(1)
$$(\sin\theta + \cos\theta)^2 + (\sin\theta - \cos\theta)^2$$
.

(2)
$$(\sin\theta - \csc\theta)^2 - (\tan\theta - \cot\theta)^2 + (\cos\theta - \sec\theta)^2$$
.

■:(1) 原式=
$$\sin^2\theta + 2\sin\theta \cdot \cos\theta + \cos^2\theta + \sin^2\theta - 2\sin\theta \cdot \cos\theta + \cos^2\theta$$

= $2(\sin^2\theta + \cos^2\theta)$
= $2x1 = 2$

(2) 原式=
$$\sin^2\theta - 2\sin\theta \cdot \csc\theta + \csc^2\theta - \tan^2\theta + 2\tan\theta \cdot \cot\theta - \cot^2\theta + \cos^2\theta$$

 $-2\cos\theta \cdot \sec\theta + \sec^2\theta$
= $(\sin^2\theta + \cos^2\theta) + (\csc^2\theta - \cot^2\theta) + (\sec^2\theta - \tan^2\theta) - 2 + 2 - 2$
= $1 + 1 + 1 - 2 = 1$

試求下列各式之值:

- (1) $\sin^2 20^\circ + \sin^2 40^\circ + \sin^2 50^\circ + \sin^2 70^\circ$.
- (2) $\tan^2 28^\circ \csc^2 62^\circ$.
- $(3) (\tan 10^{\circ} + \tan 80^{\circ})^{2} (\cot 10^{\circ} \cot 80^{\circ})^{2}$.
- **■**: (1) 原式= $\sin^2 20^\circ + \sin^2 40^\circ + \cos^2 40^\circ + \cos^2 20^\circ$ $= (\sin^2 20^\circ + \cos^2 20^\circ) + (\sin^2 40^\circ + \cos^2 40^\circ) = 1 + 1 = 2$
 - (2) 原式= $\tan^2 28^\circ \sec^2 28^\circ = -1$
 - (3) 原式= $(\tan 10^{\circ} + \cot 10^{\circ})^2 (\cot 10^{\circ} \tan 10^{\circ})^2$ = $(\tan^2 10^\circ + 2 \tan 10^\circ \cot 10^\circ + \cot^2 10^\circ) - (\cot^2 10^\circ - 2 \tan 10^\circ \cot 10^\circ + \tan^2 10^\circ)$ $=4 \tan 10^{\circ} \cot 10^{\circ} = 4 \times 1 = 4$

例題5

若 $\,\theta$ 為銳角且 $\, an heta$ =2,則 $\,3\sin^2\! heta$ - $\,4\sin\! heta\cdot\cos\! heta$ + $\,5\cos^2\! heta$ =

■: 原式=
$$\cos^2\theta$$
 (3 · $\frac{\sin^2\theta}{\cos^2\theta}$ - 4 · $\frac{\sin\theta}{\cos\theta}$ + 5)
$$= \frac{1}{\sec^2\theta} (3 \tan^2\theta - 4 \tan\theta + 5) = \frac{1}{1 + \tan^2\theta} (3x4 - 4x2 + 5) = \frac{1}{5}x9 = \frac{9}{5}$$

例題6

設 θ 為一銳角,若 $\sin\theta - \cos\theta = \frac{1}{\sqrt{5}}$,則:

(1)
$$\sin\theta\cos\theta =$$
______. (2) $\tan\theta + \cot\theta =$ ______. (3) $\sin\theta + \cos\theta =$ ______.

■:
$$\sin\theta - \cos\theta = \frac{1}{\sqrt{5}}$$
,平方得 $(\sin\theta - \cos\theta)^2 = \frac{1}{5}$

$$\Rightarrow 1 - 2\sin\theta\cos\theta = \frac{1}{5} \Rightarrow \sin\theta\cos\theta = \frac{2}{5}$$

(2)
$$\tan\theta + \cot\theta = \frac{\sin\theta}{\cos\theta} + \frac{\cos\theta}{\sin\theta} = \frac{\sin^2\theta + \cos^2\theta}{\sin\theta\cos\theta} = \frac{1}{\sin\theta\cos\theta} = \frac{5}{2}$$

(3)
$$(\sin\theta + \cos\theta)^2 = (\sin\theta - \cos\theta)^2 + 4\sin\theta\cos\theta = \frac{1}{5} + 4x\frac{2}{5} = \frac{9}{5}$$

設 θ 為銳角,若方程式 $x^2+(an \theta+\cot \theta)x-1=0$ 有一根為 $\sqrt{5}$ -2,試求下列各式之值:

- ■:(1) 設另一根爲 α ,由根與係數的關係知($\sqrt{5}$ -2)× α = -1

$$\Rightarrow \alpha = \frac{-1}{\sqrt{5} - 2} = \frac{-(\sqrt{5} + 2)}{(\sqrt{5} - 2)(\sqrt{5} + 2)} = -\sqrt{5} - 2$$

又兩根和= $(\sqrt{5}-2) + (-\sqrt{5}-2) = -(\tan\theta + \cot\theta)$ $\Rightarrow \tan\theta + \cot\theta = 4$

(2)
$$\therefore \tan\theta + \cot\theta = \frac{\sin\theta}{\cos\theta} + \frac{\cos\theta}{\sin\theta} = \frac{\sin^2\theta + \cos^2\theta}{\sin\theta \cdot \cos\theta} = \frac{1}{\sin\theta \cdot \cos\theta} \Rightarrow \sin\theta \cdot \cos\theta = \frac{1}{4}$$

$$(3) \left(\sin\theta - \cos\theta\right)^2 = \sin^2\theta - 2\sin\theta \cdot \cos\theta + \cos^2\theta = 1 - 2x\frac{1}{4} = \frac{1}{2} \Rightarrow \sin\theta - \cos\theta = \pm\frac{1}{\sqrt{2}}$$

例題8

試證:

(1)
$$\tan^2\theta - \sin^2\theta = \tan^2\theta \sin^2\theta$$
.

(2)
$$\frac{\sin\theta}{1+\cos\theta} + \frac{1+\cos\theta}{\sin\theta} = 2\csc\theta.$$

(3)
$$\frac{\tan\theta + \sec\theta - 1}{\tan\theta - \sec\theta + 1} = \frac{1 + \sin\theta}{\cos\theta} = \frac{\cos\theta}{1 - \sin\theta}.$$

$$=\frac{2+2\cos\theta}{\sin\theta\left(1+\cos\theta\right)} = \frac{2}{\sin\theta} = 2\csc\theta = \frac{1}{12}$$

$$(3) \not = \frac{\tan\theta + \sec\theta - (\sec^2\theta - \tan^2\theta)}{\tan\theta - \sec\theta + 1} = \frac{(\tan\theta + \sec\theta)(1 - \sec\theta + \tan\theta)}{\tan\theta - \sec\theta + 1}$$

$$= \tan\theta + \sec\theta = \frac{\sin\theta}{\cos\theta} + \frac{1}{\cos\theta} = \frac{1 + \sin\theta}{\cos\theta}$$

簡易測量與三角函數值表

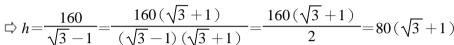
例題1

某人測得一山峰的仰角為30°,當他向山腳前進160公尺後,再測得山峰的仰角為 45°,則山高為 公尺。

■:在等腰直角 $\triangle BCD$ 中,設山高 $\bar{C}\bar{D}=h$ 公尺

$$\overline{BC} = \overline{CD} = h \Leftrightarrow \frac{1}{\sqrt{3}} = \frac{h}{h+160}$$

$$\Rightarrow \sqrt{3} h = h+160 \Rightarrow (\sqrt{3}-1) h = 160$$



故山高爲 $80(\sqrt{3}+1)$ 公尺

例題 2

某機場基於飛航安全考量,限制機場附近建築物從機場中心地面到建築物頂樓的仰角 不得超過8°,某建築公司打算在離機場中心3公里且地表高度和機場中心一樣高的地 方蓋一棟平均每樓層高5公尺的大樓。在符合機場的限制規定下,該大樓在地面以上

■:如右圖,設大樓的高爲x公尺,則 $\tan 8^\circ = \frac{x}{3000}$

 $\Rightarrow x = 3000 \tan 8^{\circ} = 3000 \times 0.1405 \approx 421.5$

而大樓每層 5 公尺,又 $\frac{421.5}{5}$ =84.3,故大樓最多可蓋 84 層樓

例題3

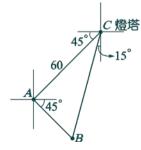
設 A 船在燈塔之西南, B 船在燈塔之南 15°西且在 A 船之東南, 已知 A 船距燈塔 60 公里,則A,B兩船相距 公里。

■:作圖如右

$$\angle ACB = 45^{\circ} - 15^{\circ} = 30^{\circ}$$
, $\overrightarrow{\text{mi}} \angle BAC = 90^{\circ} \Rightarrow \frac{\overline{AB}}{\overline{AC}} = \frac{1}{\sqrt{3}}$

$$\therefore \bar{A}\bar{B} = \bar{A}\bar{C} \cdot \frac{1}{\sqrt{3}} = 60 \times \frac{1}{\sqrt{3}} = 20\sqrt{3}$$

故 A, B 兩船相距 $20\sqrt{3}$ 公里



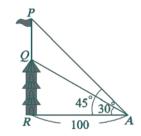
- 一旗桿立於塔頂上,某人於塔底東方100公尺處測得旗桿上下兩端的仰角分別為45°, 30°, 則旗桿之長為 公尺, 塔高為 公尺。
- ■:設旗桿PQ,塔爲QR,觀測點爲A

$$\therefore \angle PAR = 45^{\circ} \quad \therefore \bar{P}\bar{R} = \bar{A}\bar{R} = 100 \quad \forall \Rightarrow \frac{\overline{QR}}{\overline{AR}} = \frac{1}{\sqrt{3}}$$

$$\mathbb{E} \bar{Q}\bar{R} = \bar{A}\bar{R} \cdot \frac{1}{\sqrt{3}} = \frac{100}{\sqrt{3}}$$

$$\vec{PQ} = 100 - \frac{100}{\sqrt{3}} = \frac{100(3 - \sqrt{3})}{3}$$

故旗桿長
$$\frac{100(3-\sqrt{3}\;)}{3}$$
 公尺,塔高 $\frac{100}{\sqrt{3}}$ 公尺



例題5

老張從旗桿底 O 點的正西方 A 點,測得桿頂 T 點的仰角為 30° ,他向旗桿前進 30 公 尺至B點,再測得桿頂的仰角為 60° ,則:

- (1) 旗桿高為____公尺。
- (2) B 點與桿頂 T 點的距離為 公尺。
- (3) 他由 B 點回頭向 A 點走到 C 點, 測得桿頂仰角為 45° , 則 \overline{BC} 的長為 公 尺.
- (4) 若他由B點向正南方走到D點,測得桿頂仰角為 45° ,則 $B\bar{D}$ 的長為_____公 尺.
- (5) tan ∠AOD 的值為

■ : (1)
$$\overline{BT} = \overline{AB} = 30 \Leftrightarrow h = \overline{OT} = \frac{\sqrt{3}}{2}\overline{BT} = 15\sqrt{3}$$
 (公尺)

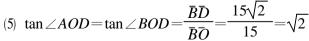
(2)
$$\overline{B}\overline{T} = \overline{AB} = 30$$
 (公尺)

(3)
$$\overline{CO} = \overline{OT} = 15\sqrt{3} \ (\stackrel{\frown}{\triangle} \overrightarrow{P}) , \ \overline{OB} = \frac{1}{2} \overline{OT} = 15$$

(4) :仰角爲
$$45^{\circ}$$
 : $\bar{D}\bar{O} = h = 15\sqrt{3}$, $\bar{B}\bar{O} = 15$

在△
$$BOD$$
中, $\bar{B}\bar{D}=\sqrt{\bar{D}\bar{O}^2-\bar{B}\bar{O}^2}=\sqrt{(15\sqrt{3})^2-15^2}=15\sqrt{2}$ (公尺)

(5)
$$\tan \angle AOD = \tan \angle BOD = \frac{\overline{B}\overline{D}}{\overline{B}\overline{O}} = \frac{15\sqrt{2}}{15} = \sqrt{2}$$



在A, B 兩支旗竿底端連線段中的某一點測得A 旗竿頂端的仰角為 29° , B 旗竿頂端 的仰角為 15°. 在底端連線段中的另一點測得 A 旗竿頂端的仰角為 26°, B 旗竿頂端 的仰角為 19° ,則 A 旗竿高度和 B 旗竿高度的比值約為_______. \bullet (四捨五入到小數 點後第一位) [98.指考甲]

θ	15°	19°	26°	29°
$\cot \theta$	3.73	2.90	2.05	1.80

 \blacksquare : 設 A 旗竿長度為 x, B 旗竿長度為 y

$$x \cot 29^{\circ} + y \cot 15^{\circ} = x \cot 26^{\circ} + y \cot 19^{\circ}$$

$$\Rightarrow$$
 1.80x+3.73y=2.05x+2.90y

$$\Rightarrow 0.83y = 0.25x \Rightarrow \frac{x}{y} = \frac{0.83}{0.25} = 3.32 \approx 3.3$$

例題 7

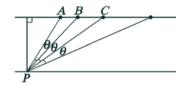
某甲觀測一飛行中之熱氣球,發現其方向一直維持在正前方,而仰角則以等速遞減, 已知此氣球之高度維持不變,則氣球正以

(A) 等速飛行 (B) 加速向某甲飛來 (C) 減速向某甲飛來 (D) 加速離某甲飛去 (E) 減速離某甲飛去。

■:由右圖知,仰角以 θ 遞減

則氣球離 P 愈來愈遠目 $\overline{BC} > \overline{BA}$

□ 加速離去,故選D



例題8

已知 cos38°10′=0.7862, cos38°20′=0.7844, 求 cos38°16′=

 \blacksquare : 設 $\cos 38^{\circ}16'=k$, 則

$$\begin{pmatrix} \cos 38^{\circ} 10' = 0.7862 \\ \cos 38^{\circ} 16' = k \\ \cos 38^{\circ} 20' = 0.7844 \end{pmatrix}$$

由內插法原理知
$$\frac{6}{10} = \frac{k - 0.7862}{0.7844 - 0.7862}$$

$$\Rightarrow k - 0.7862 = \frac{6}{10} \times (0.7844 - 0.7862) = \frac{6}{10} \times (-0.0018) = -0.00108$$

$$\Rightarrow$$
 k=0.78512 ≈ 0.7851, \Rightarrow cos38°16′=0.7851

已知 $\sin 47^{\circ}20' = 0.7353$, $\sin 47^{\circ}30' = 0.7373$, 若 $\sin \theta = 0.7359$, 則 $\theta =$ ______.

$$\blacksquare : \left(\begin{pmatrix} \sin 47^{\circ} 20' = 0.7353 \\ \sin \theta = 0.7359 \end{pmatrix} \right) \\ \sin 47^{\circ} 30' = 0.7373 \end{pmatrix}$$

由內插法原理知
$$\frac{\theta-47^{\circ}20'}{10'} = \frac{0.7359-0.7353}{0.7373-0.7353}$$

$$\Rightarrow \frac{\theta - 47^{\circ}20'}{10'} = \frac{0.0006}{0.0020} = \frac{6}{20} \Rightarrow \theta - 47^{\circ}20' = \frac{6}{20} \times 10' = 3' \Rightarrow \theta = 47^{\circ}20' + 3' = 47^{\circ}23'$$

2-4 廣義角的三角函數

例題1

下列何者與72°互為同界角?

(A) 432° (B) -432° (C) 288° (D) -288° (E) -648° .

■: (A) ○: 432°-72°=360°=1×360°為 360°之整數倍

(B) $\times : 72^{\circ} - (-432^{\circ}) = 504^{\circ}$ 不爲 360° 之整數倍

 $(C) \times :288^{\circ} - 72^{\circ} = 216^{\circ}$ 不爲 360° 之整數倍

例題 2

下列何者正確?

 $(A) \sin 100^\circ > 0$ $(B) \cos 200^\circ > 0$ $(C) \tan 90^\circ$ 無意義 $(D) \cot 0^\circ$ 無意義 $(E) \sin 10^\circ < \tan 10^\circ < \sec 10^\circ$.

 \blacksquare : (A) \bigcirc : :: θ =100° 無第二象限角 :: $\sin 100^{\circ} > 0$

 $(B) \times : : \theta = 200^{\circ}$ 無第三象限角 $: \cos 200^{\circ} < 0$

(C) ○: tan90°無意義

D ○: cot0°無意義

 $(E) \cap : 0^{\circ} < \theta < 90^{\circ} \Rightarrow \sin\theta < \tan\theta < \sec\theta$ 故選AICIDE

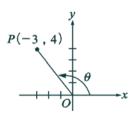
例題3

設 θ 是第二象限角,且P(-3,4)在 θ 的終邊上,則

$$\sin\theta =$$
_______, $\cos\theta =$ _______, $\tan\theta =$ _______.

$$r = \sqrt{(-3)^2 + 4^2} = 5$$

$$\pm x \sin\theta = \frac{y}{r} = \frac{4}{5} , \cos\theta = \frac{x}{r} = -\frac{3}{5} , \tan\theta = \frac{y}{x} = \frac{4}{-3} = -\frac{4}{3}$$



例題 4

設 $P(-5\sqrt{3}, y)$ 為角 θ 終邊上一點,且 $\tan\theta = \frac{1}{\sqrt{3}}$,則:

(1) y =______ • (2) $\cos \theta =$ ______ •

■ : (1) $\tan\theta = \frac{y}{-5\sqrt{3}} = \frac{1}{\sqrt{3}} \Rightarrow y = -5, r = \sqrt{(-5\sqrt{3})^2 + y^2} =$

(2)
$$\cos\theta = \frac{x}{r} = \frac{-5\sqrt{3}}{10} = -\frac{\sqrt{3}}{2}$$

試求下列各式之值:

- (1) $\sin 150^{\circ} + \cos 210^{\circ} + \tan 225^{\circ} + \cot 270^{\circ} + \sec 300^{\circ} + \csc 330^{\circ}$.
- (2) $\cos 330^{\circ} \tan 750^{\circ} \sin(-300^{\circ}) \cot 510^{\circ}$.
- (3) $\sin(180^{\circ} + \theta)\cos(90^{\circ} + \theta) + \sin(270^{\circ} \theta)\cos(180^{\circ} \theta)$.

■: (1) 原式=
$$\cos 60^{\circ} + (-\cos 30^{\circ}) + \tan 45^{\circ} + \frac{\cos 270^{\circ}}{\sin 270^{\circ}} + \csc 30^{\circ} + \sec 60^{\circ}$$
$$= \frac{1}{2} - \frac{\sqrt{3}}{2} + 1 + 0 + 2 - 2 = \frac{3 - \sqrt{3}}{2}$$

(2) 原式= $\sin 60^{\circ} \tan 30^{\circ} + (-\cos 30^{\circ})(-\tan 60^{\circ})$

$$=\frac{\sqrt{3}}{2} \times \frac{1}{\sqrt{3}} + (-\frac{\sqrt{3}}{2}) \times (-\sqrt{3}) = \frac{1}{2} + \frac{3}{2} = 2$$

(3) 原式=
$$(-\sin\theta)(-\sin\theta) + (-\cos\theta)(-\cos\theta) = \sin^2\theta + \cos^2\theta = 1$$

例題6

若
$$\cos\theta = -\frac{4}{5}$$
 且 $\tan\theta < 0$,則 $\frac{\cos\theta}{1-\tan\theta} + \frac{\sin\theta}{1-\cot\theta} = \underline{\hspace{1cm}}$.

$$\blacksquare$$
: $\cos\theta = -\frac{4}{5}$ 且 $\tan\theta < 0$ ∴ θ 為第二象限角

$$\Rightarrow \sin\theta = \frac{3}{5}, \tan\theta = -\frac{3}{4}, \cot\theta = -\frac{4}{3}$$

原式=
$$\frac{-\frac{4}{5}}{1-\left(-\frac{3}{4}\right)} + \frac{\frac{3}{5}}{1-\left(-\frac{4}{3}\right)} = \frac{-\frac{4}{5}}{\frac{7}{4}} + \frac{\frac{3}{5}}{\frac{7}{3}} = -\frac{16}{35} + \frac{9}{35} = -\frac{7}{35} = -\frac{1}{5}$$

例題7

設 $\sin\theta = -\frac{5}{13}$ 且 $180^{\circ} < \theta < 270^{\circ}$,則:

(1)
$$\cos(180^{\circ} + \theta) =$$
_____. (2) $\cos(-630^{\circ} + \theta) =$ _____. (3) $\tan(270^{\circ} - \theta) =$ _____.

$$\blacksquare : (1) \cos(90^{\circ} \times 2 + \theta) = -\cos\theta = -(-\frac{12}{13}) = \frac{12}{13}$$

(2)
$$\cos(-630^{\circ} + \theta) = \cos(630^{\circ} - \theta) = \cos(90^{\circ} \times 7 - \theta) = -\sin\theta = -(-\frac{5}{13}) = \frac{5}{13}$$

(3)
$$\tan(270^{\circ} - \theta) = \tan(90^{\circ} \times 3 - \theta) = \cot\theta = \frac{\cos\theta}{\sin\theta} = \frac{-\frac{12}{13}}{-\frac{5}{13}} = \frac{12}{5}$$

設 $\sin\theta$, $\cos\theta$ 為方程式 $5x^2+4x+k=0$ 之雨根,則實數 k=

 \blacksquare : 由根與係數的關係知 $\sin\theta + \cos\theta = -\frac{4}{5}$, $\sin\theta\cos\theta = \frac{k}{5}$

$$\Rightarrow \sin\theta + \cos\theta)^2 = \frac{16}{25} \Rightarrow \sin^2\theta + 2\sin\theta\cos\theta + \cos^2\theta = \frac{16}{25}$$

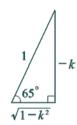
$$\Rightarrow 1 + 2\sin\theta\cos\theta = \frac{16}{25} \Rightarrow 1 + 2\times\frac{k}{5} = \frac{16}{25} \Rightarrow k = -\frac{9}{10}$$

例題9

設 $\sin(-65^{\circ}) = k$, 試以 k 表示 $\tan(-2315^{\circ})$.

 \blacksquare : $\sin(-65^{\circ}) = k \Rightarrow \sin 65^{\circ} = -k$, $\sharp + k < 0$

故
$$\tan(-2315^{\circ}) = -\tan 2315^{\circ} = -\tan(90^{\circ} \times 25 + 65^{\circ}) = \cot 65^{\circ} = -\frac{\sqrt{1-k^2}}{k}$$



例題 10

下列敘述何者為真?(複選)

- (A) $\sin 50^{\circ} < \cos 50^{\circ}$ (B) $\tan 50^{\circ} < \cot 50^{\circ}$ (C) $\tan 50^{\circ} < \sec 50^{\circ}$ (D) $\sin 230^{\circ} < \cos 230^{\circ}$
- [90.學測] (E) $\tan 230^{\circ} < \cot 230^{\circ}$.
- \Rightarrow : (A) \times : $\sin 50^{\circ} > \sin 40^{\circ} = \cos 50^{\circ}$
 - (B) \times : tan50°>tan40°=cot50°

(C)
$$\bigcirc$$
: $\tan 50^{\circ} = \frac{\sin 50^{\circ}}{\cos 50^{\circ}} < \frac{1}{\cos 50^{\circ}} = \sec 50^{\circ}$

D ○ :
$$\sin 230^{\circ} = \sin(90^{\circ} \times 2 + 50^{\circ}) = -\sin 50^{\circ}$$

 $\cos 230^{\circ} = \cos(90^{\circ} \times 2 + 50^{\circ}) = -\cos 50^{\circ}$
 $\forall \sin 50^{\circ} > \cos 50^{\circ}$ ∴ $\sin 230^{\circ} < \cos 230^{\circ}$

(E)
$$\times$$
: $\tan 230^\circ = \tan (90^\circ \times 2 + 50^\circ) = \tan 50^\circ$
 $\cot 230^\circ = \cot (90^\circ \times 2 + 50^\circ) = \cot 50^\circ$
又 $\tan 50^\circ > \cot 50^\circ$ ∴ $\tan 230^\circ > \cot 230^\circ$ 故選(C) D