高雄市明誠中學 高一數學平時測驗 日期:98.11.03					
範	2-1 等差、等比數列	班級	<i>φ</i> <u>+</u>	生	
圍	級數(1)	座號	名	当	

一、單選題(每題5分)

- 1.下列何者正確?
 - (A)若 $b^2 = ac$,則 a ,b ,c 為等比數列
 - (B)數列 $< a_n >$ 滿足 $a_n = a_{n-1}q$, $n \in N$, q 爲常數 , 則 $< a_n >$ 爲等比數列
 - (C)數列($a_n > \pitchfork$, $a_1 + a_2 + \cdots + a_n = S_n$, 目 $S_n = 4n^2 n + 2$, 則 $a_n = S_n S_{n-1} = 8n 5$
 - (D)數列 $< a_n >$ 前 n 項和 $S_n = A^n 1$,則 $< a_n >$ 不一定是等比數列

【解答】(D)

【詳解】

(A)若 $b^2 = ac$,則 a:b=b:c,但必須 $b \neq 0$ 且 $c \neq 0$,a,b,c 才爲等比數列

(B)若
$$a_n = a_{n-1}q$$
, $n \in N$,則 $\frac{a_n}{a_{n-1}} = q$,此時必須 $q \neq 0$,則< $a_n >$ 才爲等比數列

(C)
$$a_1 = S_1 = 4 - 1 + 2 = 5$$

 $a_n = S_n - S_{n-1} = (4n^2 - n + 2) - [4(n-1)^2 - (n-1) + 2]$
 $= 4n^2 - n + 2 - 4n^2 + 8n - 4 + n - 1 - 2 = 8n - 5$, $n \ge 2$, $\not\bowtie a_n = \begin{cases} 5, n = 1 \\ 8n - 5, n \ge 2 \end{cases}$
 $a_n = 8n - 5$, $\not\bowtie n = 1 \implies \overrightarrow{\bowtie n}$

(D)
$$a_1 = S_1 = A - 1$$
, $a_2 = S_2 - S_1 = (A^2 - 1) - (A - 1) = A^2 - A = A(A - 1)$
 $a_3 = S_3 - S_2 = (A^3 - 1) - (A^2 - 1) = A^3 - A^2 = A^2(A - 1)$, $a_n = S_n - S_{n-1} = (A^n - 1) - (A^{n-1} - 1) = A^n - A^{n-1} = A^{n-1}(A - 1)$
 $\stackrel{\text{\tiny iff}}{=} A \neq 0$ $\stackrel{\text{\tiny iff}}{=}$, $\frac{a_2}{a_1} = \frac{a_3}{a_2} = \cdots = \frac{a_n}{a_{n-1}} = A$, $\stackrel{\text{\tiny iff}}{=} A \stackrel{\text{\tiny iff}}{=} A$

二、填充題(每題 10 分)

1. 有一等差數列,設第 n 項爲 a_n ,已知 $a_3 = 8$, $a_8 = -7$,求 $a_n =$

【解答】-3n+17

【詳解】

$$\begin{cases} a_3 = a_1 + 2d = 8 \\ a_8 = a_1 + 7d = -7 \end{cases} \Rightarrow \begin{cases} a_1 = 14 \\ d = -3 \end{cases}, : a_n = a_1 + (n-1)d = 14 + (n-1) \cdot (-3) = -3n + 17$$

2. 等差數列< $a_n >$,首 n 項和為 S_n ,已知 $a_3 = 9$, $a_{20} = 43$,求 $S_n =$

【解答】 $n^2 + 4n$

$$\begin{cases} a_1 + 19d = 43 \\ a_1 + 2d = 9 \end{cases} \Rightarrow \begin{cases} a_1 = 5 \text{ (首項)} \\ d = 2 \text{ (公差)} \end{cases}, \text{ 則 } S_n = \frac{n[2a_1 + (n-1)d]}{2} = \frac{n}{2}[10 + (n-1) \times 2] = n^2 + 4n$$

3. 若等比數列 $\{a_n\}$ 的第四項為 $\{a_n\}$ 的第四項。 $\{a_n\}$ 的第四項為 $\{a_n\}$ 的第四項為 $\{a_n\}$ 的第四項為 $\{a_n\}$ 的第四項。 $\{a_n\}$ 的第四項為 $\{a_n\}$ 的第四項。 $\{a_n\}$ 的第四列。 $\{a_n\}$ 的第四列。 $\{a_n\}$ 的第四列。 $\{a_n\}$ 的第四列。 $\{a_n\}$ 的第一列。 $\{a_n\}$ 的第四列。 $\{a_n\}$ 的第一列。 $\{a_n\}$ 的第四列。 $\{a_n\}$ 的第一列。 $\{a_n\}$

【解答】
$$\frac{3069}{4}$$

【詳解】

$$\begin{cases} 6 = a_1 r^3 & \cdots & \\ 24 = a_1 r^5 & \cdots & \\ \end{cases}, \frac{@}{@} \Rightarrow r^2 = 4, \notin r = 2, -2 (\overrightarrow{\wedge} \xrightarrow{\triangle})$$

$$r = 2$$
 代入①,得 $a_1 = \frac{3}{4}$,所求= $\frac{\frac{3}{4}(2^{10}-1)}{2-1} = \frac{3069}{4}$

4. 設有一等比數列,首項為 7,末項為 448,總和為 889,若此數列的公比為 r,項數為 n,則數對 $(n,r) = _____$ 。

【解答】(7,2)

【詳解】

設等比數列 $< a_n >$,公比 r , S_n 表前 n 項的和 ,由 $S_n = \frac{a_1 - ra_n}{1 - r}$ 可得 $889 = \frac{7 - r \cdot 448}{1 - r}$ ∴ 889 - 889r = 7 - 448r ∴ 441r = 882 ,故得 r = 2 r = 2 代入 $448 = 7 \cdot 2^{n-1}$ \Leftrightarrow $64 = 2^{n-1}$,n - 1 = 6 ,n = 7 ,所求數對 (n, r) = (7, 2)

5. 一等差數列之前 10 項之和爲 30,前 30 項之和爲 10,則其前 40 項之和爲

【解答】-40

【詳解】

設前 n 項之和為 S_n ,且令 $S_{20} = a$, $S_{40} = b$,則 S_{10} , $S_{20} - S_{10}$, $S_{30} - S_{20}$, $S_{40} - S_{30}$ 亦成等 差數列即 30,a - 30,10 - a,b - 10 成等差數列, $2(a - 30) = 30 + (10 - a) \Rightarrow a = \frac{100}{3}$,

公差
$$d = (a-30) - 30 = a - 60 = -\frac{80}{3}$$
,則 $(b-10) = (10-a) + d = -50$,得 $S_{40} = b = -40$

6. 有一等比數列< a_n >,已知 S_n = 16, S_{2n} = 20,則 S_{3n} =_____。

【解答】21

【詳解】

$$S_n$$
 , $S_{2n} - S_n$, $S_{3n} - S_{2n}$ 成 G.P. , 即 16 , 4 , $S_{3n} - 20$ 成 G.P. , $4^2 = 16(S_{3n} - 20) \Rightarrow S_{3n} = 21$

7. 設 S_n 表數列< a_n >的前 n 項的和,若 $S_n = 2n^2 + n$,則此數列的第 n 項 $a_n = \underline{\hspace{1cm}}$ 。

【解答】 $a_n = 4n - 1$, $\forall n \in N$

【詳解】
$$a_1 = S_1 = 2 \cdot 1^2 + 1 = 3$$

 $a_n = S_n - S_{n-1} = (2n^2 + n) - [2(n-1)^2 + (n-1)] = (2n^2 + n) - (2n^2 - 3n + 1) = 4n - 1, n \ge 2$

8. 在 4 與 12 之間依序插入 10 個數 $a_1, a_2, a_3, \dots, a_{10}$, 使此 12 個數成等差數列, 則 $a_7 = \cdots$ 。

【解答】 $\frac{100}{11}$

【詳解】

等差數列< 4 , a_1 , a_2 , a_3 , … , a_{10} ,12 >的首項爲 4 、第 12 項爲 12 ,12 = 4 + (12 – 1)d 故公差 $d = \frac{12-4}{12-1} = \frac{8}{11}$,等差數列第八項 $a_7 = 4 + (8-1) \cdot d = 4 + 7 \cdot \frac{8}{11} = \frac{100}{11}$

9. 在 1 與 999 之間,插入 n 項,使其成爲一等差數列,試求數列總和超過 10000 時,最小自然數 n 值爲_____。

【解答】19

【詳解】

等差數列: $1, b_1, b_2, \dots, b_n, 999,$ 共(n+2)項,總和= $\frac{(n+2)(1+999)}{2} > 10000 \Rightarrow n > 18$,所以最小自然數n 爲 19

10. 若 $< a_n >$ 爲一個等比數列,已知 $a_n = 81$,公比 r = 3, $S_n = \frac{364}{3}$,則 $a_1 = \underline{\hspace{1cm}}$ 。

【解答】 $\frac{1}{3}$

【詳解】

$$S_n = \frac{a_1(r^n - 1)}{r - 1} = \frac{a_1r^{n - 1} \cdot r - a_1}{2} = \frac{a_n \cdot r - a_1}{2} = \frac{81 \cdot 3 - a_1}{2} = \frac{364}{3} \quad , \quad \therefore \quad a_1 = \frac{1}{3}$$

11. (1) $< a_n >$ 爲一個等差數列, $a_{10} = 23$, $a_{25} = -22$,則 $a_n = _____$ 。 (2)接上題,若 $S_n = a_1 + a_2 + a_3 + \cdots + a_n$ 爲最大時,n 之值爲_____。

【解答】(1)53-3n (2)17

【詳解】

(1) 設公差爲 d,由 $a_{25} = a_{10} + (25-10)d \Rightarrow a_{25} - a_{10} = 15d$ ∴ 15d = (-22) - 23

$$\therefore$$
 $d = -3$, \therefore $a_n = a_{25} + (n-25)d = -22 + (n-25)(-3) = 53 - 3n$

(2) 當 a_n 開始爲負時, S_{n-1} 最大

$$a_n < 0 \Rightarrow 53 - 3n < 0, n > \frac{53}{3}, \Rightarrow n \ge 18$$
,故 S_{17} 最大,...當 $n = 17$ 時, S_n 之值爲最大

12.等差數列 $-1,2,5,8,\dots,(3n+2),\dots$ 至少要加到第幾項總和才會超過 75。答:____。

【解答】8

$$a_1 = -1$$
, $d = 3$ \Rightarrow $S_n = \frac{n}{2} [2(-1) + (n-1)(3)] > 75$ \Rightarrow $n(3n-5) > 150$

$$\Rightarrow 3n^2 - 5n - 150 > 0 \Rightarrow n > \frac{5 + \sqrt{25 + 12 \cdot 150}}{2 \cdot 3} = \frac{5 + 5\sqrt{73}}{6} \doteq 7.95 \dots ; : n \ge 8$$

13.自 100 到 300 的正整數中,被7除餘3的數,它們的總和爲____。

【解答】5771

【詳解】

14.設一等差複數數列的首項是 2+45i,公差是 1-3i,若此數列的首 n 項和爲 S_n ,則使 S_n 爲實數的正整數 n=_____。

【解答】n=31

【詳解】

首
$$n$$
 項和 $S_n = \frac{n}{2} [2 \cdot (2 + 45i) + (n - 1)(1 - 3i)]$
$$= \frac{n}{2} [(n + 3) + (93 - 3n)i] = \frac{1}{2} n(n + 3) + \frac{1}{2} n(93 - 3n)i$$

因爲 S_n 爲實數,則虛部 $\frac{1}{2}n(93-3n)=0$,且 n 爲自然數,故取 n=31

【解答】76

16.有一凸 n 邊形,內角度數依次成等差數列,公差爲 5° ,最小角爲 120° ,則 (1) $n = _____ 。 (2)$ 最大角爲 _____。

【解答】(1)9 (2)160°

內角度數總和
$$\frac{n[2\times120+(n-1)\times5]}{2}=(n-2)180\Rightarrow n^2-25n+144=0$$
 $(n-9)(n-16)=0\Rightarrow n=9,16$, $n=9\Rightarrow$ 最大角 $a_9=120+8\times5=160$ 但 $n=16\Rightarrow a_{16}=120+15\times5=195>180$ (不合)

17.有二等差數列之首 n 項和之比爲(3n+1):(7n-11),則此二數列第 6 項的比爲

【解答】17:33

【詳解】

設等差數列 $< a_n >$ 前n項和為 S_n ,等差數列 $< b_n >$ 前n項和為 S_n' ,

第
$$\frac{11+1}{2}$$
=6項爲全部 11 項之中央項 $\frac{a_6}{b_6} = \frac{11 \cdot a_6}{11 \cdot b_6} = \frac{S_{11}}{S_{11}} = \frac{3(11)+1}{7(11)-11} = \frac{34}{66} = \frac{17}{33}$

18.有兩個等差數列,其第 n 項的比爲(3n+1):(7n-11),則其前 9 項和的比爲_____。

【解答】 $\frac{2}{3}$

【詳解】

設此二等差數列各爲 $< a_n > + < b_n > +$ 前n項和各爲 $S_n + S_n' +$ 則

第
$$\frac{9+1}{2}$$
=5項爲全部9項之中央項 , $\frac{S_9}{S_9}$ = $\frac{9a_5}{9b_5}$ = $\frac{a_5}{b_5}$ = $\frac{3(5)+1}{7(5)-11}$ = $\frac{16}{24}$ = $\frac{2}{3}$

19.集合序列 $\{1\}$, $\{2,3\}$, $\{4,5,6\}$, $\{7,8,9,10\}$,…,若 S_n 表第 n 個集合內之元素 各數值總和,求 $S_{21} =$ _____。

【解答】4641

$$1+2+3+\cdots+20=\frac{(1+20)\times 20}{2}=210$$
,第 21 個集合內之元素爲 211、212、213、....、

231 共 21 個 , ...
$$S_{21} = 211 + 212 + \cdots + 231 = \frac{(211 + 231) \times 21}{2} = 4641$$