	高雄市明誠中學 高二(下)平時測驗 日期:95.06.05							
範	3-2、3 機率+期望值	班級	普二	班	姓			
圍	3-2、3 機率+期望值	座號			名			

一、選擇題(每題 10 分)

1. (複選)投擲公正骰子n個(n∈N),點數和的期望值爲 E_n ,下列何者正確?

(A)
$$E_2 = 7$$
 (B) $E_4 = 14$ (C) $E_8 = 28$ (D) $E_{10} = 35$ (E) $E_{2n} = 7 n$

【解答】(A)(B)(C)(D)(E)

【詳解】
$$E_1 = \frac{1+2+3+4+5+6}{6} = \frac{7}{2} \implies E_n = nE_1 = \frac{7n}{2}$$

∴ $E_2 = 7$, $E_4 = 14$, $E_8 = 28$, $E_{10} = 35$, $E_{2n} = 7n$

二、填充題(每題 10 分)

1. 從5雙不同花色的襪子中,任取4隻,每隻被取到的機會相等,則此4隻,恰成一雙機率爲____。

【解答】 $\frac{1}{7}$

【詳解】4 隻恰成一雙⇒ 一雙及來自不同的二雙之一,所求機率 = $\frac{C_1^5 \cdot C_2^4 \cdot 1^2}{C_4^{10}} = \frac{5 \cdot 6 \cdot 1}{210} = \frac{1}{7}$

- 2. 重複投擲一公正骰子, $令 x_i$ 表第i次所擲出的點數, 則
 - $(1)x_1 \le x_2 \le x_3$ 的機率爲
 - $(2)x_1 < x_2 < x_3$ 的機率為
 - (3)合於 $x_1 + x_2 + x_3 + x_4 = 7$ 的機率爲_____。

【解答】
$$(1)\frac{7}{27}$$
 $(2)\frac{5}{54}$ $(3)\frac{5}{324}$

【詳解】

 $(1)x_1 \le x_2 \le x_3$ 表投擲 3 次所出現點數可相同,且須依大小順序排列

其個數相當於從 6 種點數共出現 3 次的重複組合數,故機率為 $\frac{H_3^6}{6^3} = \frac{C_3^8}{6^3} = \frac{7}{27}$

- (2) $x_1 < x_2 < x_3$,此事件元素個數爲從 6 個點數中任取 3 個相異點(從小至大)的組合數 故機率爲 $\frac{C_3^6}{6^3} = \frac{5}{54}$
- $(3) x_1 + x_2 + x_3 + x_4 = 7 表投擲 4 次所出現點數和 = 7 ,件相當於 <math>x_1 + x_2 + x_3 + x_4 = 7$ 且 $1 \le x_1$, x_2 , x_3 , $x_4 \le 6$ 的正整數解的組數 ,故機率爲 $\frac{H_3^4}{6^4} = \frac{C_3^6}{6^4} = \frac{5}{324}$
- 3. 有 4 個人同時玩猜拳(剪刀、石頭、布),同時出拳一次,則 (1)恰有一人得勝的機率爲____。 (2)無法分出勝負的機率爲____。

【解答】
$$(1)\frac{4}{27}$$
 (2) $\frac{13}{27}$

【詳解】

(1)4 人猜拳,其出拳方法有 3^4 種,4 人中恰有 1 人勝的選擇有 C_1^4 種如當勝者出「剪刀」時,其他 3 人只能出「布」1 種

勝者的出拳法有 3 種,其餘 3 人皆只有 1 種 : . 所求機率 = $\frac{C_1^4 \times 3 \times 1^3}{3^4} = \frac{4}{27}$

(2)無人得勝其出拳法爲剪刀,石頭,布均有人出或 4 人均出同一種 令「剪刀」爲a,「石頭」爲b,「布」爲c,則不分勝負的出拳法有

①二同二異(
$$aabc$$
, $bbac$, $ccab$):方法數 $C_3^3 \times \frac{3!}{2!} \times \frac{4!}{2!} = 36$

②四同 (aaaa, bbbb, cccc) :方法數 $C_1^3 \times \frac{4!}{4!} = 3$

∴ 所求機率 =
$$\frac{36+3}{3^4} = \frac{13}{27}$$

【解答】 $\frac{73}{441}$

【詳解】P(1): P(2): P(3): P(4): P(5): P(6) = k: 2k: 3k: 4k: 5k: 6k

$$\Rightarrow k + 2k + 3k + 4k + 5k + 6k = 21k = 1 \Rightarrow k = \frac{1}{21}$$

點數和爲 10 的情形有(4,6),(5,5),(6,4),故所求 $=\frac{4}{21}\times\frac{6}{21}+\frac{5}{21}\times\frac{5}{21}+\frac{6}{21}\times\frac{4}{21}=\frac{73}{441}$

5. 一副撲克牌的大牌(10,J,Q,K,A)共有 20 張,從中一次取 4 張,則點數和大於 53 的機率爲何?(點數規定如下:J=11,Q=12,K=13,A=14)

【解答】 $\frac{23}{1615}$

【詳解】從 20 張大牌中任取 4 張的方法數 = C_4^{20} = 4845

4 張點數和大於 53 的取法,可能有下列情況

(1)4張14點

(2)3 張 14 點,1 張 13 點

(3)3 張 14 點,1 張 12 點 (4)2 張 14 點,2 張 13 點

取法數 =
$$C_4^4 + C_3^4 C_1^4 + C_3^4 C_1^4 + C_2^4 C_2^4 = 1 + 16 + 16 + 36 = 69$$

取 4 張點數和大於 53 的機率 = $\frac{69}{4845}$ = $\frac{23}{1615}$

【解答】 $(1)\frac{11}{15}$ $(2)\frac{2}{3}$

【詳解】(1) $P(A \cup B) = P(A) + P(B) - P(A \cap B) = \frac{1}{2} + \frac{1}{3} - \frac{1}{10} = \frac{11}{15}$

(2)
$$P(B') = 1 - P(B) = 1 - \frac{1}{3} = \frac{2}{3}$$

7. 若
$$A \cdot B \cdot C$$
 為某試驗的三個事件,且 $P(B) = \frac{1}{4} \cdot P(C) = \frac{1}{3} \cdot P(A \cup B) = \frac{1}{2} \cdot P(A \cap B) = P(B \cap C) = P(C \cap A) = \frac{1}{12} \cdot P(A \cap B \cap C) = \frac{1}{24} \cdot 求 P(A \cup B \cup C) \circ$

【解答】 $\frac{17}{24}$

【詳解】

8. 袋中有2紅球、2白球,同時取2球,求兩球同色的機率是多少?

【解答】
$$\frac{1}{3}$$

【詳解】
$$\frac{C_2^2 + C_2^2}{C_2^4} = \frac{2}{6} = \frac{1}{3}$$

9. 某公司生產的 25 個產品中,有 7 個是不良品。設每一件產品被取中機會均等,今每次取一件,取出不放回,連取四次,試求下列各事件的機率:

(1)在第三次取到不良品。 (2)在第三次取到第二個不良品。

【解答】
$$(1)\frac{7}{25}$$
 $(2)\frac{63}{575}$

【詳解】

(1)

1	2	3	機 率
良	良	不良	$\frac{18 \times 17 \times 7}{25 \times 24 \times 23}$
良	不良	不良	$\frac{18 \times 7 \times 6}{25 \times 24 \times 23}$
不良	良	不良	$\frac{7 \times 18 \times 6}{25 \times 24 \times 23}$
不良	不良	不良	$\frac{7 \times 6 \times 5}{25 \times 24 \times 23}$

:. 第三次取中不良品的機率= $\frac{1}{25 \times 24 \times 23}$ (18×17×7+18×7×6+7×18×6 +7× 6×5)= $\frac{7}{25}$ P.S 任何一次取到不良品的機率皆爲 $\frac{7}{25}$

(3)如上表,第三次取中第二個不良品的機率=
$$\frac{1}{25\times24\times23}$$
(18×7×6+7×18×6)= $\frac{63}{575}$

10.有十個球,編號爲 1,2,3,4,…,9,10,今任取三球,求三個數中,任二個均不連續的機率爲何?

【解答】 $\frac{7}{15}$

【詳解】

樣本空間爲S,則 $n(S)=C_3^{10}=120$,任二個均不連續的情況分爲

十個編號為 $1, 2, 3, 4, \dots, 9, 10$,今任取三號,任二個均不連續 $\Rightarrow \frac{7!}{7!} \times \frac{P_3^8}{3!} = 56$

- ∴ 所求機率為 $\frac{56}{5!} = = \frac{7}{15}$
- 11.一袋中有黑球、白球、紅球共 12 個,已知黑球有四個且由袋中任取二球,取到二個均 爲紅球的機率爲 $\frac{5}{33}$,求白球的個數。

【解答】3個

【詳解】設白球有
$$x$$
 個,則紅球有 $8-x$ 個, $\frac{C_2^{8-x}}{C_2^{12}} = \frac{5}{33}$ \Rightarrow $(8-x)(7-x) = 20$ \Rightarrow $x = 3$

12.從8個正數、5個負數中,任取3個數相乘,求相乘結果是正數的機率是多少?

【解答】 $\frac{68}{143}$

【詳解】

積爲正數可分爲「三正數」或「一正數和二負數」二種

- (1)三正數 \Rightarrow $C_3^8 = 56$ (種),
- (2)—正數和二負數 \Rightarrow $C_1^8 \times C_2^5 = 80$ (種)

:. 所求機率 =
$$\frac{56 + 80}{C_3^{13}} = \frac{136}{286} = \frac{68}{143}$$

13.將 5 個大小形狀相同,顏色不同的球,全投入 3 個不同的袋子中,則

(1)每個袋子中均有球的機率爲_____。 (2)空袋子個數的期望值爲_____個。

【解答】
$$(1)\frac{50}{81}$$
 $(2)\frac{32}{81}$

【詳解】5個不同顏色的球放入3個不同的袋子中,其放入法有 $3^5 = 243$ 種

(1)每個袋子均有球,依個數安排可分成兩類 $\left\{ \begin{array}{l} (3\cdot 1\cdot 1) \\ (2\cdot 2\cdot 1) \end{array} \right\}$

故放法有
$$\frac{C_3^5 \times C_1^2 \times C_1^1}{2!} \times 3! + \frac{C_2^5 \times C_2^3 \times C_1^1}{2!} \times 3! = 60 + 90 = 150$$

∴ 所求機率為
$$\frac{150}{243} = \frac{50}{81}$$

(2) 1 個空袋子的機率為 $C_1^3(C_1^5C_4^4 \cdot 2! + C_2^5C_3^3 \cdot 2!) = 90$

2 個空袋子的機率為 $C_2^3 \cdot C_5^5 \cdot 1 = 3$

空袋子個數	0	1	2
機率	150	90	3
	243	243	243

∴ 空袋子個數的期望値=
$$0 \times \frac{150}{243} + 1 \times \frac{90}{243} + 2 \times \frac{3}{243} = \frac{96}{243} = \frac{32}{81}$$

14. 擲 4 個公正硬幣,若出現四個正面,可得 20 元,三個正面可得 15 元,二個正面可得 10 元,一個正面可得 5 元,則爲使賭局公平起見,得四個反面應付______元才公平。

【解答】160

【詳解】

3 個正面的機率=
$$\frac{C_3^4}{16}$$
= $\frac{4}{16}$,2 個正面的機率= $\frac{C_2^4}{16}$ = $\frac{6}{16}$

1 個正面的機率 =
$$\frac{C_1^4}{16}$$
 = $\frac{4}{16}$, 4 個反面的機率 = $\frac{1}{16}$

設出現 4 反面應付x元,爲求賭局公平 ⇒ 期望值=0

$$\Rightarrow 20 \times \frac{1}{16} + 15 \times \frac{4}{16} + 10 \times \frac{6}{16} + 5 \times \frac{4}{16} + (-x) \times \frac{1}{16} = 0$$

$$\Rightarrow x = 20 + 60 + 60 + 20 = 160 \, \text{Tz}$$

15.甲、乙二人網球比賽,約定先贏3局者勝,敗者應付給勝者4000元。若已知甲、乙二人實力相當,現於甲勝2局時因故不能繼續比賽,如按機率處理,乙應付給甲_______元。

【解答】3000

【詳解】

16.袋中 1 號球 1 個,2 號球 2 個,3 號球 3 個,…,n號球n個($n \in N$),取到k號球可得k元($1 \le k \le n$),假設任取一球得錢的期望值爲 E_n 元,則 $E_7 =$ _____。

【解答】 5

【詳解】
$$E_n = \frac{1^2 + 2^2 + 3^2 + \dots + n^2}{1 + 2 + 3 + \dots + n} = \frac{\frac{n(n+1)(2n+1)}{6}}{\frac{n(n+1)}{2}} = \frac{n(n+1)(2n+1)}{6} \cdot \frac{2}{n(n+1)} = \frac{2n+1}{3}$$

故 $E_7 = \frac{2 \times 7 + 1}{3} = 5$

17.假設一位用功的高二學生能安全升級的機率為 0.9999, 今某位用功的高二學生參加保險公司「安全升級方案」繳保費 100 元,若在高二升高三不幸留級時,保險公司付給家長 5 萬元的理賠金,試求此保險公司期望利潤為何?

【解答】95元

【詳解】(這只是題目,沒這種保險方案)

該高二學生能安全升級的機率為 0.9999,不幸留級的機率 = 0.0001 保險公司利潤的期望值= 100×0.9999 - (50000 - $100)\times0.0001$ = 99.99 - 5 + 0.01 = 95 元

- 18. 連續投擲一顆公正的骰子四次,試求:
 - (1)6點出現2次的機率。 (2)6點出現次數的期望值。

【解答】
$$(1)\frac{25}{216}$$
 $(2)\frac{2}{3}$

【詳解】
$$(1)C_2^4 (\frac{5}{6})^2 (\frac{1}{6})^2 = \frac{25}{216}$$
 $(2)\frac{1}{6} \times 4 = \frac{2}{3}$

- 19. (1)某同學參加電視台機智問答。設有甲、乙兩套題目,甲套較難,乙套較易,比賽規則是:參加者可決定先選哪一套題目,由主持人在該套題目中隨機選取一題,若參加者答對,則主持人在另一套題目中隨機選取一題令參加者作答,若第一次答錯,則立即退出比賽。設只答對甲套題目的獎金是 1200 元,只答對乙套題目的獎金是 800 元,兩題皆答對的獎金是 3000 元,若該同學已知答對甲套題目的機率為 0.6,答對乙套題目的機率是 0.9,問他應選哪套題目作答比較有利?
 - (2)試求上題中先選乙套題目參加者之期望獎金。

【解答】(1)乙套 (2)1908

【詳解】

(1)設 S_1 , S_2 分別表答對甲、乙套題目的事件,依題意 $P(S_1)=0.6$, $P(S_2)=0.9$ 先選甲套之獎金期望値

= 0
$$+1200 \times 0.6 \times (1-0.9) + 3000 \times 0.6 \times 0.9$$

(甲套答錯) + (答對甲,而答錯乙) + (答對甲又答對乙)
= 0 + 72 + 1620 = 1692

先選乙套之獎金期望值

$$=$$
 0 $+800 \times 0.9 \times (1-0.6) +3000 \times 0.6 \times 0.9$ (乙套答錯) $+$ (答對乙,而答錯甲) $+$ (答對乙又答對甲) $= 0 +1620 +288 =1908$

$$(2)E(\mathbb{Z}) = 1620 + 288 = 1908$$