高雄市明誠中學 高二(下)平時測驗 日期:95.04.24						
範	2-3,4排列、組合	班級	普二	班	姓	
圍		座號			名	

一、填充題(每題 10 分)

- 1. 由 1 至 10 的十個數字中,任選出三個數字,
 - (1)若選出的三個數字均相連,則其選法有 種。
 - (2)若選出的三個數字兩兩均不相連,則其選法有 種。

【解答】(1)8 (2)56

【詳解】

(1)在1至10個數字中,選3個相連號碼的方法

有(1,2,3),(2,3,4),(3,4,5),......,(8,9,10)共8種選法

(2) 10 個號碼選 3 個兩兩均不相連,可視為 7 個×,3 個〇的排列且〇〇〇不相鄰

7個×先排,前後共8個間隔任取3個來擺〇,故有 $\frac{7!}{7!} \times \frac{P_3^8}{3!} = 56$ 種

- 2. 甲、乙、丙、丁、戊、己、庚等7人排成一列,
 - (1)甲一定在乙、丙左,但位置不一定相鄰,則排法有種。
 - (2)丙不排首或丁不排尾,則排法有種。

【解答】(1) 1680 (2) 3720

【詳解】

- (1)先排丁、戊、己、庚 4 人及 3 個空位,有 $\frac{7!}{3!}$ 種排法,在 3 個空位,最左排甲、剩下 2 個空位排乙、丙 $\frac{7!}{3!}$ ×1×2! = 2520 種排法
- (2) 3 人受限制, 共有 $7!-2\times6!+5!=3720$ 種排法

【解答】28

【詳解】

設在 14 秒內鳴放長音 x 次,短音 y 次,則間隔數爲(x+y-1)次

故在 15 秒內所作信號有 $\frac{7!}{6!1!} + \frac{6!}{3!3!} + \frac{5!}{5!0!} = 28$ 種

4.14個人圍一長方形桌而坐,長邊每邊坐4人,短邊每邊坐3人,試問共有_____種坐法。

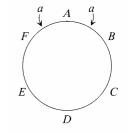
【解答】7×13!

【詳解】
$$\frac{14!}{14} \times (4+3) = 7 \times 13!$$

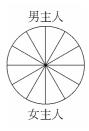
- 5. 五對夫婦圍圓桌聊天,不計方位,
 - (1)試求男女相間的坐法有_____種。(2)試求男女相間且夫婦相鄰的坐法有_____種。
 - (3)每對夫婦均相對而坐,有 種方法。

【解答】(1)2880 (2)48 (3)384

- 【詳解】(1) 5 位先生先環狀排列,5 位太太再插 6 個空隙 $\frac{5!}{5} \times 5! = 2880$
 - (2) 設五對夫婦爲 Aa , Bb , Cc , Dd , Ee ,夫妻一體先入座 , 其坐法有 $\frac{5!}{5}$ = 4!種,而 a 入座時,只能於 A 之左右之一,當 a 坐定後, 其餘 b , c , d , e ,只有一種坐法,故坐法有 $4! \times 2 \times 1^4 = 48$ 種



(3) 主人夫婦先則一直徑相對入坐,坐法有 $\frac{2!}{2}$,再讓四對夫婦選另外 4 條直徑入坐有 4! 種坐法,而五對夫婦可對調有 $(2!)^4$ 種坐法,故所求爲 $\frac{2!}{2} \times 4! \times 2^4 = 384$



- 6. 有 10 種顏色,塗下列多面體,每面一色且每面顏色不同,多面體可任意 翻轉,
 - (1)塗一正方體,有 種方法。
 - (2)塗一長,寬,高均不相等之長方體,有 種方法。

【解答】(1)6300 (2)37800

【詳解】(1)
$$10 \times 9 \times \frac{P_4^8}{4} \times \frac{1}{6} = 6300$$
 (2) $10 \times 9 \times (\frac{P_4^8}{4} \times 2) \times \frac{1}{2} = 37800$

- 7. 有6件不同的玩具,分給甲、乙、丙三位兒童,則
 - (1)任意分,每人可兼得的分法有 種。
 - (2)甲分得 4 件, 乙、丙各分得 1 件的分法有______種。
 - (3)乙、丙二人至少各分得1件的分法有 種。

【解答】(1)729 (2)30 (3)602

- 【詳解】(1)任意分,每人可兼得,所有分法有36 = 729種
 - (2)6件玩具分成4、1、1件共3堆,4件的給甲,其餘給乙、丙各得1件的

∴ 分法有
$$\frac{C_4^6 C_1^2 C_1^1}{2!} \times 1 \times 2! = 30$$
種

(3)乙、丙至少各得1件的分法 = 所有分法 - (乙沒有或丙沒有)

$$= 3^6 - 2 \cdot 2^6 + 1^6 = 729 - 128 + 1 = 602$$

- 8. 有6個球投入4個箱子中,求下列投入法各多少種?
 - (1)球相同,箱子相同,每箱投入球數不限。_____
 - (2)球不同,箱子不同,每箱投入球數不限。_____
 - (3)球相同,箱子不同,每箱投入球數不限。_____
 - (4)球相同,箱子不同,每箱至少投入一球。_____
 - (5)球不同,箱子不同,每箱至少投入一球。_____

【解答】(1)9 (2)4096 (3)84 (4)10 (5)1560

【詳解】

(1)球相同,箱子相同,則箱中投入球數決定其投入法有 (6,0,0,0,0),(5,1,0,0),

(4, 2, 0, 0), (4, 1, 1, 0), (3, 3, 0, 0), (3, 2, 1, 0), (3, 1, 1, 1),

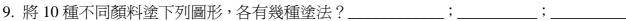
(2,2,2,0),(2,2,1,1)等,共有9種投入法

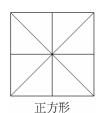
(2)球不同,箱子不同,則每一球均有 4 種不同投入法 \therefore 投入法有 $4^6 = 4096$ 種

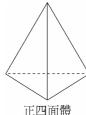
(3)球相同,箱子不同,則 $H_6^4 = C_6^{4+6-1} = C_3^9 == 84$ 種

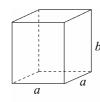
(4)球相同,箱子不同,每箱至少一球的投入法由x+y+z+u=6, 正整數解 $H_{6-1-1-1-1}^4 = C_2^{4+2-1} = 10$

(5)球不同,箱子不同,每箱至少一球的投入法 = (全部) - (有箱子沒有球) $=4^{6}-4\times3^{6}+6\times2^{6}-4\times1^{6}+1\times0^{6}=4096-2916+384-4=1560$









【解答】(1) 453600 (2) 420 (3) 18900

【詳解】(1)
$$\frac{P_8^{10}}{8} \times 2 = 453600$$
 (2) $10 \times \frac{P_3^9}{3} \times \frac{1}{4} = 420$ (3) $10 \times 9 \times \frac{P_4^8}{4} \times \frac{1}{2} = 18900$

10.7 本書分給 10 個人,每人至多一本,

(1) 書本相同有幾種分法?_____;(2) 書本不同有幾種分法?_____

【解答】(1) 120 (2) 604800

【詳解】 $(1)\frac{10!}{7!3!}$ = 120(不盡相異物的排列); $(2)P_7^{10}$ = 604800(種)

11.有渡船3艘,每艘限载6人,試求下列之安全渡法?

(1) 6 人同時渡河。______ (2) 7 人同時渡河。______

(3) 8 人同時渡河。______(4) 9 人同時渡河。_____

【解答】(1)729 (2)2184 (3)6510 (4)19194

【詳解】(1) 6 人同時渡河的搭乘方法有 $3^6 = 729$ 種

(2)7 人不得同乘一船,渡河搭乘方法有 $3^7 - C_7^7 \times P_1^3 = 3 = 2184$ 種

(3)8 人渡河, 超載的情形有二類: ①8 人同搭乘一船; ② 8 人分成 7 人、1 人兩組 ∴ 8 人安全渡河方法有 $3^8 - C_8^8 \times P_1^3 - C_7^8 C_1^1 \times P_2^3 = 6510$ 種

(4)9 人渡河, 超載的情形有四類

①9 人同搭乘一船

②9人中,8人一船,另一人另一船

③9人中,7人一船,另二人另一船 ④9人中,7人一船,另二人各一船

故 9 人安全渡河方法有 $3^9 - C_9^9 \times P_1^3 - C_8^9 C_1^1 \times P_2^3 - C_7^9 C_2^2 \times P_2^3 - \frac{C_7^9 C_1^2 C_1^1}{21} \times P_3^3 = 19194$ 種

11.有相同的足球3個,籃球2個,手球1個,

(2)將 6 個球分給排成一列的 6 位小朋友且相鄰兩人不可得同一類球,則分法有多少種?

【解答】(1)1680 (2)10

【詳解】(1)視爲 3 個足球,2 個籃球,1 個手球,2 個「0」的排列,排法 $\frac{8!}{3!2!2!}$ =1680種

(2)將 6 個球排成一列的分給小朋友,同類球不相鄰,如同 FFFBBH 排列但同字不相鄰 即(F,F,F 不相鄰) – (F,F,F 不相鄰且 B,B 相鄰): $\frac{3!}{2!} \times \frac{P_3^4}{3!} - 2 \times \frac{P_3^3}{3!} = 10$

12.有 5 件相異物,分給A,B,C,D四人,

(2)若 5 件全分出,每人至少一件,則分法有種。

【解答】(1)60 (2)240

【詳解】(1) 5 件玩具分成 2、1、1、1 件共 4 堆,4 件的給 A,其餘給 B、C、D 各得 1 件的

∴ 分法有
$$\frac{C_2^5 C_1^3 C_1^2 C_1^1}{3!} \times 1 \times 3! = 60$$
種

(2)5件分給4人,每人至少一件,則4人挑1人恰得2件,其餘各1件

∴ 分法有
$$C_1^4 \times \frac{C_2^5 C_1^3 C_1^2 C_1^1}{3!} \times 1 \times 3! = 60 = 240$$
 種

13.「attention」一字中的字母,每次取出5個字母,則

【解答】(1)41 (2)2250

【詳解】

「attention」一字的字母中,有 3 個 t , 2 個 n , 1 個 a , 1 個 e , 1 個 i , 1 個 o , 取出 5 個 字母分成五類

取法 排法

①三同二同
$$C_1^1 \times C_1^1 = 1$$
 $1 \times \frac{5!}{3!2!}$

②三同二異
$$C_1^1 \times C_2^5 = 10 \quad 10 \times \frac{5!}{3!}$$

③二同二同一異
$$C_2^2 \times C_1^4 = 4$$
 $4 \times \frac{5!}{2!2!}$

④二同三異
$$C_1^2 \times C_3^5 = 20 \quad 20 \times \frac{5!}{2!}$$

⑤五 異
$$C_5^6 = 6$$
 $6 \times 5!$

故(1)組合數 =
$$1 + 10 + 4 + 20 + 6 = 41$$

(2)排列數 = $1 \times \frac{5!}{3!2!} + 10 \times \frac{5!}{3!} + 4 \times \frac{5!}{2!2!} + 20 \times \frac{5!}{2!} + 6 \times 5!$

$$= 10 + 200 + 120 + 1200 + 720 = 2250$$

【解答】13

【詳解】

設選手 n 人,賽程方法有 C_2^n 種 \Rightarrow $C_2^n = 78 \Rightarrow \frac{n(n-1)}{2} = 78 \Rightarrow n(n-1) = 156 \Rightarrow n = 13$

15. 設 $n \in N$,若 $P_3^n = 4 C_2^{n+1}$,則 $n = ____$ 。

【解答】5

【詳解】
$$P_3^n = 4 C_2^{n+1}$$
 $\Rightarrow n(n-1)(n-2) = 4 \times \frac{(n+1)n}{2}$ ∴ $n^2 - 3n + 2 = 2n + 2$
 $\Rightarrow n(n-5) = 0 \Rightarrow n = 0$ (不合) 或 $n = 5$ ∴ $n = 5$

16.有6件不同的物品:

- (1)等分成三堆,每堆各有2個,則分法有 種。
- (2)分給A,B,C三人,其中A3 件,B2 件,C1 件,則分法有_____種。

【解答】(1)15 (2)60

【詳解】

- (1) 6 件玩具分成 $2 \cdot 2 \cdot 2$ 件共 3 堆,共 $\frac{C_2^6 C_2^4 C_2^2}{3!} = 15$ 種挑法
- (2) 6 件玩具分成 3、2、1 件共 3 堆,依序給 A,B,C 3 人,共 C_3^6 C_2^1 C_1^1 = 60 種分法
- 17.求以下組合數之和,

【解答】(1)5985 (2)1023

【詳解】

$$(1)C_{3}^{3} + C_{3}^{4} + C_{3}^{5} + \cdots + C_{3}^{20} = (C_{4}^{4} + C_{3}^{4}) + C_{3}^{5} + \cdots + C_{3}^{20} (C_{3}^{3} = 1 = C_{4}^{4})$$

$$= (C_{4}^{5} + C_{3}^{5}) + \cdots + C_{3}^{20} (利用巴斯卡公式C_{m}^{n-1} + C_{m-1}^{n-1} = C_{m}^{n})$$

$$= C_{4}^{6} + \cdots + C_{3}^{20} = \cdots = C_{4}^{21} = 5985$$

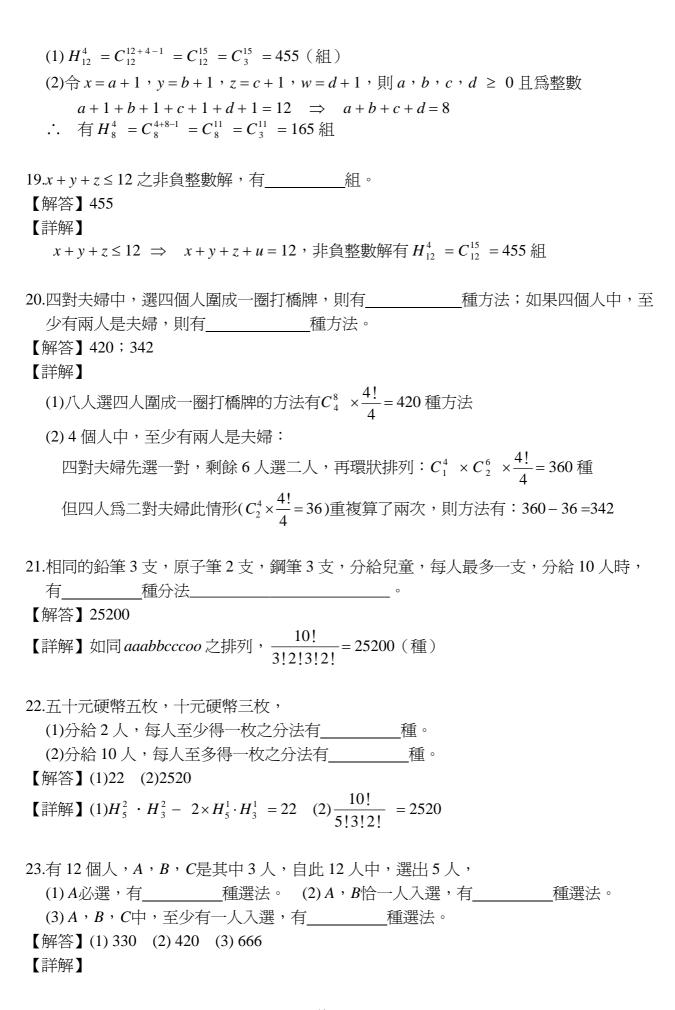
(2)
$$C_0^{10} + C_1^{10} + C_2^{10} + C_3^{10} + \cdots + C_9^{10} + C_{10}^{10} = 2^{10}$$

$$\Rightarrow C_1^{10} + C_2^{10} + C_3^{10} + \cdots + C_9^{10} + C_{10}^{10} = 2^{10} - C_0^{10} = 2^{10} - 1 = 1023$$

18.設x + y + z + u = 12,則此方程式有_____組非負整數解,____組正整數解。

【解答】455;165

【詳解】



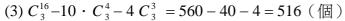
- (1) $C_{5-1}^{12-1} = C_4^{11} = 330$ (種)
- (2) $A \cdot B$ 中選 1 人,再由其餘 10 人選 4 人 \Rightarrow $C_1^2 \cdot C_4^{10} = 2 \times 210 = 420$
- (3) $(A \cdot B \cdot C$ 至少一人入選) = (全) $-(A \cdot B \cdot C$ 均不選) $\Rightarrow C_5^{12} C_5^{12-3} = 792 126 = 666$
- 24.平面上有 P_1 , P_2 , ..., P_{16} 排成如圖的正方形, 則
 - (1) 16 點中,其中三點共線有_____組,四點共線有_____組。
 - (2)此 16 點可決定 條直線,(3)且決定 個三角形。

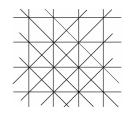
【解答】(1)4;10 (2)62; (3)516

【詳解】(1)16點中,其中三點共線有4組,四點共線有10組。

(2)任三點不共線時,有 C_2^{16} =120條,

但其中四點共線有 10 條,3 點共線有 4 條; 故實際上之直線 有 C_2^{16} $-10 \cdot C_2^4$ +10-4 C_2^3 +4=120-60+10-12+4=62 條





25.六個不同玩具全部分給甲、乙、丙3人,每人至少1個之分法有_____種。

【解答】540

【詳解】

(1)按(4,1,1)分 3人
$$\Rightarrow \frac{C_4^6 \cdot C_1^2 \cdot C_1^1}{2!} \times 3! = 90$$

(2)按(3,2,1)分 3人
$$\Rightarrow$$
 $C_3^6 \cdot C_2^3 \cdot C_1^1 \times 3! = 360$

(3)按(2,2,2)分 3人
$$\Rightarrow \frac{C_2^6 \cdot C_2^4 \cdot C_2^2}{3!} \times 3! = 90$$

- ∴ 所求 = 90 + 360 + 90 = 540
- 26.5 件不同物品,分給甲、乙、丙、丁 4 人,

【解答】(1)405 (2)240

【詳解】

- (1)先選 1 件給甲,餘下三人分另外 4 件, $C_1^5 \cdot (3^4) = 5 \times 81 = 405$ (種)
- (2) $4^5 4 \cdot 3^5 + 6 \cdot 2^5 4 \cdot 1^5 + 1 \cdot 0^5 = 240$ (種)
- 27.九個相同的球分給甲、乙、丙三人,每人至少一球,
 - (1)九個球全部分完,分法有_____種。(2)九個球可不全部分完,分法共有_____種。

【解答】(1)28 (2)84

【詳解】

(1)設甲分 x_1 個球,乙分 x_2 個球,丙分 x_3 個球

 $x_1 + x_2 + x_3 = 9$, $1 \le x_i \le 9$,i = 1,2,3,正整數解,共 $H_6^3 = C_6^{3+6-1} = C_6^8 = 28$ 種分法

(2)承上,設剩 x_4 個球(可爲 0) $\Rightarrow x_1 + x_2 + x_3 + x_4 = 9$,共 $H^4_{9-1-1-1} = C^{4+6-1}_6 = C^9_3 = 84$ 種取法

- 28.紅球、黃球、白球、黑球各有三個,同色相同,
 - (1)取三球排一列的排列數爲____。(2)取四個排一列,相同不相鄰的排列數爲____。
 - (3)取三球之組合數爲____。 (4)取六球之組合數爲____。
 - (5)取六球,各色球各至少一個,組合數爲。
 - (6)12 個球全部分給甲、乙二人,每人至少分得一個,分法有種。

【解答】(1)64 (2)168 (3)20 (4)44 (5)10 (6)254

【詳解】

(1)排列情形如下

三同:
$$C_1^4 \cdot \frac{3!}{3!} = 4$$
,二同一異: $C_1^4 C_1^3 \cdot \frac{3!}{2!} = 36$,三異: $C_3^4 \cdot 3! = 24$

- ∴ 共 4 + 36 + 24 = 64 種排列
- (2)排列情形如下:四同、三同一異不會發生

4種顏色排1個給2個同色球、其餘3色排1給2個不同色球

四異: $C_4^4 \times 4! = 24$

.:. 共 144 + 24 = 168 種排列

(3)組合情形如下

三同:
$$C_1^4 = 4$$
,二同一異: $C_1^4 C_1^3 = 12$,三異: $C_3^4 = 4$,共 $4 + 12 + 4 = 20$ 種組合

- (4)組合情形如下
 - 三同三同(3,3): $C_2^4 = 6$,三同二同一異(3,2,1): $C_1^4 C_1^3 C_1^2 = 24$
 - 三同三異(3,1,1,1): $C_1^4C_3^3=4$,二同二同二同(2,2,2): $C_3^4=4$
 - 二同二同二異(2,2,1,1): $C_2^4 C_2^2 = 6$... 共 6 + 24 + 4 + 4 + 6 = 44 種組合
- (5)組合情形如題(4)之(3,1,1,1)及(2,2,1,1) ∴ 共有4+6=10種組合
- (6)先分紅球給甲 x_1 個, Zx_2 個, $x_1 + x_2 = 3$, $0 \le x_1$, $x_2 \le 3$

共 $H_3^2 = C_3^{2+3-1} = C_3^4 = 4$ 種分法,同理,黃、白、黑球也有 $H_3^2 = 4$ 種分法

- \therefore 全部有 $H_3^2 \times H_3^2 \times H_3^2 = 4 \times 4 \times 4 \times 4 = 256$ 種分法,但全部給甲或乙等 2 種分法不合
- ∴ 共 256 2 = 254 種分法