高雄市明誠中學 高二(上)平時測驗 日期:94.10.31						
範	2-4	班級	普二	班	姓	
圍	空間平面方程式	座號		,	名	

一、選擇題(每題 10 分)

1. 已知空間中二點 A(2,0,1),B(-1,1,2),若線段 \overline{AB} 之垂直平分面方程式爲 ax + by + cz + 1 = 0,則 a + b + c 之值爲(A) 2 (B) 3 (C) 4 (D) 5 (E) 6

【解答】(A)

【詳解】

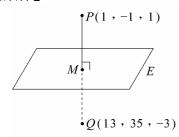
平面 E 之法向量 $\vec{n} = \overrightarrow{BA} = (3, -1, -1)$,且過 A, B 之中點 $M(\frac{1}{2}, \frac{1}{2}, \frac{3}{2})$ 則 $E: 3(x-\frac{1}{2}) - (y-\frac{1}{2}) - (z-\frac{3}{2}) = 0 \Rightarrow 3x - y - z + \frac{1}{2} = 0$ $\Rightarrow 6x - 2y - 2z + 1 = 0$ ∴ a + b + c = 6 + (-2) + (-2) = 2

二、填充題(每題 10 分)

1. 點P(1,-1,1)對於平面E之對稱點爲Q(13,35,-3),則E之方程式爲

【解答】3x + 9y - z - 175 = 0

【詳解】



 \overrightarrow{PQ} 之中點 $M(7, 17, -1) \in E, \overrightarrow{PQ} = (12, 36, -4) \perp E,$

取平面 E 之法向量 $\bar{n} = (3, 9, -1)$

$$E: 3(x-7) + 9(y-17) - (z+1) = 0 \implies E: 3x + 9y - z - 175 = 0$$

2. 兩平面 2x - y - 3z = 5 與 3x + 2y - z = 8 的夾角爲

【解答】 $\frac{\pi}{3}$ 或 $\frac{2\pi}{3}$

【詳解】

$$\cos\theta = \pm \frac{|2\times3 + (-1)\times2 + (-3)\times(-1)|}{\sqrt{2^2 + (-1)^2 + (-3)^2} \cdot \sqrt{3^2 + 2^2 + (-1)^2}} = \frac{7}{14} = \frac{1}{2} \implies \cos\theta = \pm \frac{1}{2}, \ \theta = \frac{\pi}{3} \text{ in } \frac{2\pi}{3}$$

3. 兩平面ax + 3y + 5z = 3 與 2ax - y + az = 1 互相垂直,則 $a = _____$ 。

【解答】
$$\frac{1}{2}$$
或 -3

【詳解】

法向量(a, 3, 5), (2a, -1, a)互相垂直

$$\Rightarrow a(2a) + 3(-1) + 5 \cdot a = 0 \Rightarrow 2a^2 + 5a - 3 = 0$$

$$\therefore (a+3)(2a-1) = 0 \implies a = -3 \ \text{g} \frac{1}{2}$$

4. 垂直於 $E_1: x-y+2z+3=0$, $E_2: 2x+y+3z+5=0$,且過點A(2,3,2)之平面方程式爲。

【解答】
$$5x - y - 3z - 1 = 0$$

【詳解】

$$\overrightarrow{n_1} = (1 \cdot -1 \cdot 2) \cdot \overrightarrow{n_2} = (2 \cdot 1 \cdot 3)$$

$$\Rightarrow \overrightarrow{n_1} \times \overrightarrow{n_2} = (\begin{vmatrix} -1 & 2 \\ 1 & 3 \end{vmatrix}, \begin{vmatrix} 2 & 1 \\ 3 & 2 \end{vmatrix}, \begin{vmatrix} 1 & -1 \\ 2 & 1 \end{vmatrix}) = (-5 \cdot 1 \cdot 3)$$

$$E : 5(x-2) - (y-3) - 3(z-2) = 0 \Rightarrow 5x - y - 3z - 1 = 0$$

5.A(1,3,2)在平面E上之投影點爲B(2,1,0),則C(3,5,1)到平面E的距離爲____。

【解答】3

【詳解】

法向量
$$\overrightarrow{AB} = (1, -2, -2)$$
 $\Rightarrow E: (x-2) - 2(y-1) - 2z = 0 \Rightarrow x - 2y - 2z = 0$

$$d(C, E) = \frac{|3 - 10 - 2|}{\sqrt{1 + 4 + 4}} = 3$$

6. 平面 2x + 3y + 6z = 12, 交x, y, z軸於點A, B, C,則 $\triangle ABC$ 在平面 2x - 2y + z = 1 上正射影的面積 = _____。

【解答】 $\frac{8}{3}$

【詳解】

平面 2x + 3y + 6z = 12 與 $x \cdot y \cdot z$ 軸交點分別爲 $A(6 \cdot 0 \cdot 0) \cdot B(0 \cdot 4 \cdot 0) \cdot C(0 \cdot 0 \cdot 2)$

$$\overrightarrow{AB} = (-6, 4, 0), \overrightarrow{AC} = (-6, 0, 2)$$

⇒
$$\triangle ABC$$
 的面積 $=\frac{1}{2}\sqrt{|\overrightarrow{AB}|^2|\overrightarrow{AC}|^2-(\overrightarrow{AB}\cdot\overrightarrow{AC})^2}=\frac{1}{2}\sqrt{784}=\frac{28}{2}=14$

$$2x + 3y + 6z = 12$$
 與 $2x - 2y + z = 1$ 所來銳角 θ

$$\Rightarrow \cos\theta = \frac{|(2 \cdot 3 \cdot 6) \cdot (2 \cdot -2 \cdot 1)|}{\sqrt{4+9+36} \cdot \sqrt{4+4+1}} = \frac{4}{3 \times 7} = \frac{4}{21}$$

$$\triangle ABC$$
 在 $2x - 2y + z = 1$ 上正射影的面積爲($\triangle ABC$) $\cos \theta = 14 \times \frac{4}{21} = \frac{8}{3}$

7. 設一平面E平行平面 2x + y + 2z - 1 = 0 且與三坐標平面所成四面體之體積為 9,則此平面 E的方程式為 _____。

【解答】 $2x + y + 2z = \pm 6$

【詳解】

 \therefore 平面E與平面 2x + y + 2z - 1 = 0 平行

∴ 令平面
$$E$$
的方程式為 $2x + y + 2z = k$,則 $\frac{x}{\frac{k}{2}} + \frac{y}{k} + \frac{z}{\frac{k}{2}} = 1$

$$::$$
 E與三坐標平面所圍成的四面體體積 $V = \frac{1}{6} \left| \frac{k}{2} \cdot k \cdot \frac{k}{2} \right| = \frac{1}{24} \left| k^3 \right|$

$$\therefore \quad \frac{1}{24} |k|^3 = 9 \quad \Rightarrow \quad |k|^3 = 6^3 \quad \therefore \quad |k| = 6 \quad \Rightarrow \quad k = \pm 6$$

故平面E的方程式為 $2x + y + 2z = \pm 6$

8. 空間中含A(1,0,0),B(0,1,0),C(0,0,1)之平面方程式爲____。

【解答】x+y+z=1

【詳解】用截距式得 $\frac{x}{1} + \frac{y}{1} + \frac{z}{1} = 1$,即x + y + z = 1

9. 平面 E_1 : x + 2y - 3z + 2 = 0, E_2 : 3x - 2y + z + 5 = 0 相交於直線L, 任取L上兩相異點P, Q, 若點A(-3,1,0), 則平面APQ的方程式爲_____。

【解答】9x + 10y - 17z + 17 = 0

【詳解】

點P, Q在平面APQ上 \Rightarrow L在平面APQ上

而L爲平面 $E_1: x + 2y - 3z + 2 = 0$, $E_2: 3x - 2y + z + 5 = 0$ 的交線,而 $A \notin E_1$

- ... 可設平面APQ的方程式為 (3x-2y+z+5)+t(x+2y-3z+2)=0
- \therefore 過點A(-3,1,0)代入 $\therefore t=6$
- ∴平面APQ: (3x-2y+z+5)+6(x+2y-3z+2)=0⇒平面APQ: 9x+10y-17z+17=0
- 10.過點A(-2,1,1),B(1,1,3)的平面E,若與平面F: x-2y+3z=5垂直,則E的方程式爲_____。

【解答】4x - 7y - 6z + 21 = 0

【詳解】

設平面 E , F 的法向量各為 $\overrightarrow{n_1}$, $\overrightarrow{n_2}$ \therefore $E \perp F$ \Rightarrow $\overrightarrow{n_1} \perp \overrightarrow{n_2}$

 $\stackrel{\longrightarrow}{\text{li}} \overrightarrow{n_2} = (1 \cdot -2 \cdot 3) \cdot \overrightarrow{AB} = (3 \cdot 0 \cdot 2)$

$$\Rightarrow \overrightarrow{n_1} = \overrightarrow{n_2} \times \overrightarrow{AB} = (\begin{vmatrix} -2 & 3 \\ 0 & 2 \end{vmatrix}, \begin{vmatrix} 3 & 1 \\ 2 & 3 \end{vmatrix}, \begin{vmatrix} 1 & -2 \\ 3 & 1 \end{vmatrix}) = (-4, 7, 6) = -(4, -7, -6)$$

 $\therefore E: 4x - 7y - 6z + 21 = 0$

11.設過點A(1,0,0), $B(0,0,\frac{1}{3})$ 的平面E與平面 $F:x+z=\frac{1}{2}$ 的銳夾角爲 45°,則E的方程式爲

【解答】 $x \pm \sqrt{6} y + 3z = 1$

【詳解】

設
$$E: \frac{x}{1} + \frac{y}{b} + \frac{z}{\frac{1}{3}} = 1$$
 ... E 的法向量為 $\overrightarrow{n_1} = (1, \frac{1}{b}, 3)$

而F: $x+z=\frac{1}{2}$ 的法向量為 $\overrightarrow{n_2}=(1,0,1)$

$$\cos 45^{\circ} = \frac{|\overrightarrow{n_1} \cdot \overrightarrow{n_2}|}{|\overrightarrow{n_1}| \cdot |\overrightarrow{n_2}|} \quad \Rightarrow \quad \frac{1}{\sqrt{2}} = \frac{4}{\sqrt{10 + \frac{1}{b^2} \cdot \sqrt{2}}} \quad \Rightarrow \quad b^2 = \frac{1}{6} \quad \Rightarrow \quad b = \pm \frac{1}{\sqrt{6}}$$

$$\therefore E : x \pm \sqrt{6} y + 3z = 1$$

11.空間坐標系中,有一平面鏡E,有一雷射光線經過點A(1,3,2)射向鏡面E上的點B(0,1,0),反射又經過點C(-4,5,2),則平面E方程式爲

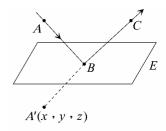
【解答】x-4y-3z+4=0

【詳解】

由光學原理, \overrightarrow{BC} 之延長線必經過A關於平面E的對稱點A',

且
$$\overrightarrow{A'B} = \overrightarrow{AB} = 3$$
,又 $\overrightarrow{BC} = (-4, 4, 2)$,且 \overrightarrow{BC} 上的單位向量

$$\vec{u} = \frac{\overrightarrow{BC}}{|\overrightarrow{BC}|} = \frac{(-4,4,2)}{6} = (\frac{-2}{3},\frac{2}{3},\frac{1}{3})$$



$$\Rightarrow \overrightarrow{A'B} = 3\overrightarrow{u} = 3 \cdot (\frac{\overrightarrow{BC}}{|\overrightarrow{BC}|}) = 3 \cdot (\frac{-2}{3}, \frac{2}{3}, \frac{1}{3}) = (-2, 2, 1)$$

即
$$(-x, 1-y, -z) = (-2, 2, 1)$$
,得 $A'(x, y, z) = (2, -1, -1)$

平面
$$E$$
 之法向量爲 $\overrightarrow{AA}' = (1, -4, -3), 又過 B 點 $(0, 1, 0)$$

$$E: (x-0)-4(y-1)-3(z-0)=0$$
, $E: x-4y-3z+4=0$

12.平面E包含兩平面 2x + y - 4 = 0 及y + 2z = 0 之交線,且垂直平面 3x + 2y - 3z - 6 = 0,則 E之方程式爲

【詳解】

設
$$E: (2x + y - 4) + k(y + 2z) = 0$$
·····①

⇒
$$E: 2x + (k+1)y + 2kz - 4 = 0$$
, 法向量 $\bar{n} = (2, k+1, 2k)$

而
$$E': 3x + 2y - 3z - 6 = 0$$
 之法向量 $\overrightarrow{n'} = (3, 2, -3)$

$$E \perp E'$$
 $\vec{n} \cdot \vec{n'} = 6 + 2k + 2 - 6k = 0 \Rightarrow k = 2 \text{ A.A.}$

$$\Rightarrow E: 2x + 3y + 4z - 4 = 0$$

13.設平面 E: x - 2y + 2z + 3 = 0,求平行 E 且距離爲 3 的平面方程式。

【解答】
$$x - 2y + 2z - 6 = 0$$
 或 $x - 2y + 2z + 12 = 0$

【詳解】

設所求平面為 x - 2y + 2z + k = 0

則
$$\frac{|3-k|}{\sqrt{1^2+(-2)^2+2^2}} = 3 \implies |3-k| = 9$$
 ∴ $3-k=\pm 9 \implies k=-6$ 或 12

∴ 所求方程式: x - 2y + 2z - 6 = 0 或 x - 2y + 2z + 12 = 0

14.求平行於平面 x + y - 3z + 1 = 0 且 $x \cdot y \cdot z$ 軸截距和 = 10 的平面方程式。

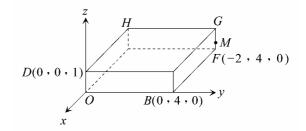
【解答】x + y - 3z - 6 = 0

【詳解】

設所求平面 x+y-3z=k, 則三軸截距 x=k, y=k, $z=-\frac{k}{3}$

截距和 = $k + k - \frac{k}{3} = 10$ $\Rightarrow k = 10 \times \frac{3}{5} = 6$ ∴ x + y - 3z - 6 = 0 爲所求

15.在右圖所示的長方體中,M點在 \overline{FG} 上,且 $\overline{FM} = \frac{1}{2}\overline{MG}$,求通過 H 點,且與 \overline{DM} 垂直 的平面方程式。



【解答】3x - 6y + z + 5 = 0

【詳解】

如圖,D(0,0,1),B(0,4,0),F(-2,4,

故通過H垂直 \overline{DM} 的平面法向量爲 \overline{DM}

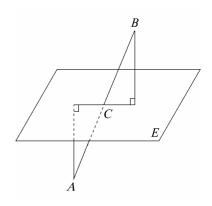
... 所求平面方程式為 $-2(x+2)+4(y-0)-\frac{2}{3}(z-1)=0$,即 3x-6y+z+5=0 為所求

16.設點 A(-2,-2,2), B(6,1,-2),若 \overline{AB} 交平面 E: 2x + y - 2z = 5 於 C 點,則 $\overline{AC}: \overline{BC} = ?$

【解答】5:4

【詳解】

$$\overline{AC}$$
: $\overline{BC} = d(A \cdot E) : d(B \cdot E)$
= $\frac{|-4-2-4-5|}{3} : \frac{|12+1+4-5|}{3} = 5 : 4$



17.若空間中四點 A(0,0,0), B(1,2,3), C(2,3,1), D(1,1,a) 共平面,則 a=?

【解答】(1) 7x-5y+z=0 (2)-2

【詳解】

先求 ABC 平面方程式,再將(1,1,a)代入方程式求 a

$$\overrightarrow{AB} = (1 \cdot 2 \cdot 3) \cdot \overrightarrow{AC} = (2 \cdot 3 \cdot 1)$$

$$\therefore ABC$$
 平面的法向量 $\overrightarrow{AB} \times \overrightarrow{AC} = \begin{pmatrix} 2 & 3 \\ 3 & 1 \end{pmatrix}, \begin{vmatrix} 3 & 1 \\ 1 & 2 \end{vmatrix}, \begin{vmatrix} 1 & 2 \\ 2 & 3 \end{vmatrix}) = (-7, 5, -1)$

∴ *ABC* 平面的方程式:
$$-7(x-0)+5(y-0)-1(z-0)=0$$
 ⇒ $7x-5y+z=0$ $D(1,1,a)$ 在平面上 ∴ $7-5+a=0$ ⇒ $a=-2$

18. 若點 $P(x_0, y_0, z_0)$ 是平面 2x - y - 4z - 1 = 0 上一點,則 $\sqrt{(x_0 - 1)^2 + (y_0 + 2)^2 + (x_0 - 3)^2}$ 的最小值爲_____。

最小値為
$$\frac{9}{\sqrt{21}} = \frac{3\sqrt{21}}{7}$$

【詳解】

設
$$A(1, -2, 3)$$
 : $P(x_0, y_0, z_0)$: $\overline{AP} = \sqrt{(x_0 - 1)^2 + (y_0 + 2)^2 + (z_0 - 3)^2}$

- \therefore P爲平面E: 2x-y-4z-1=0 上一點
- \therefore \overline{AP} 的最小值即爲A點到平面E之距離d

$$d = \frac{|2+2-12-1|}{\sqrt{4+1+16}} = \frac{|-9|}{\sqrt{21}} = \frac{9}{\sqrt{21}} = \frac{3\sqrt{21}}{7}$$

19. 若平面E過點P(2,3,1)且在卦限(+,+,+)與三坐標平面所成之四面體體積爲最小,則平面E的方程式爲____。

【解答】
$$\frac{x}{6} + \frac{y}{9} + \frac{z}{3} = 1$$

【詳解】

令平面
$$E$$
 為 $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$,點 $P(2, 3, 1)$ $\Rightarrow \frac{2}{a} + \frac{3}{b} + \frac{1}{c} = 1$

$$\therefore a > 0, b > 0, c > 0 \Rightarrow \frac{\frac{2}{a} + \frac{3}{b} + \frac{1}{c}}{3} \ge \sqrt[3]{\frac{6}{abc}} \Rightarrow \frac{1}{6}abc \ge 27$$

當
$$\frac{2}{a} = \frac{1}{3}$$
, $\frac{3}{b} = \frac{1}{3}$, $\frac{1}{c} = \frac{1}{3}$ 時,等號成立 $\Rightarrow a = 6$, $b = 9$, $c = 3$ $\Rightarrow \frac{x}{6} + \frac{y}{9} + \frac{z}{3} = 1$

20.設O- xyz空間中,兩點A(1,-2,-1),B(3,1,0), 一平面E:x-y-z-1=0,則

(1) \overline{AB} 在E之正射影的長度爲____。

(2)若E上一點P使 $\overline{AP}^2 + \overline{BP}^2$ 爲最小,則P點之坐標爲

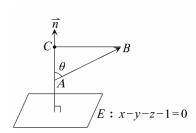
【解答】(1)
$$\frac{\sqrt{114}}{3}$$
 (2)($\frac{4}{3}$, $\frac{1}{6}$, $\frac{1}{6}$)

【詳解】

$$(1)\overrightarrow{AB} = (2, 3, 1)$$
,平面 E 之法向量 $\vec{n} = (1, -1, -1)$

$$\cos\theta = \frac{\overrightarrow{AB} \cdot \overrightarrow{n}}{|\overrightarrow{AB}| \cdot |\overrightarrow{n}|} = \frac{-2}{\sqrt{14} \cdot \sqrt{3}} \cdot \sin\theta = \sqrt{1 - \cos^2\theta} = \sqrt{\frac{19}{21}}$$

所求 = $\overline{BC} = \overline{AB} \cdot \sin\theta = \sqrt{14} \cdot \frac{\sqrt{19}}{\sqrt{21}} = \frac{\sqrt{114}}{3}$



(2) \overline{AB} 之中點 $M(2, \frac{-1}{2}, \frac{-1}{2})$,根據中線定理 $\overline{PA}^2 + \overline{PB}^2 =$

$$2\overline{PM}^2 + \frac{1}{2}\overline{AB}^2$$

即 $\overline{PA}^2 + \overline{PB}^2 = 2\overline{PM}^2 + 2\overline{AM}^2 \ge 2\overline{MH}^2 + 2\overline{AM}^2$ (其中 H 爲 M 在 E 之投影點,)

設
$$H(2+t, \frac{-1}{2}-t, \frac{-1}{2}-t)$$
代入 $E: x-y-z-1=0$

 $\Rightarrow (2+t) - (\frac{-1}{2} - t) - (\frac{-1}{2} - t) - 1 = 0 \Rightarrow t = \frac{-2}{3}$,故所求之 P 點即爲 $H(\frac{4}{3}, \frac{1}{6}, \frac{1}{6})$

