	對該式 數學					班級:			座號: 得分:		
1.	(13,32)	2.	(1) (C)		(2) (E)	3.	1		45		
4.	-0.6	5.	$-\frac{1}{2}$		(-1,8)	6.	(1) y = x + 10		(2) 80		
7.	(A)	8.	(B)	9.	(C)	10.	(A)(C)(D)(E)	11.	(B)(C)(D)		
12.	13.25	13.	(1) -0.25		$(2) y = -\frac{1}{5}x + 9$	14.	(1) 0.4		$(2) y = \frac{3}{5}x + 103$		

一、概念題(共10格,每格5分)

1.有十二個數字,由小而大為 2、4、x、7、10、y、15、16、16、20、25、z,若全距為 30,中位數為 14,則數對(y,z) =

童 全距= z - 2 = 30 \Rightarrow z = 32; 中位數= $\frac{y+15}{2} = 14$ \Rightarrow y = 13

- 2. (A) 1, 2, 3, 4, 5, 6, 7, 8, 9
- (B) 1, 1, 1, 1, 1, 1, 1, 9
- (C) 1, 1, 1, 1, 5, 9, 9, 9
- (D) 1, 1, 1, 5, 5, 5, 9, 9, 9
- (E) 1, 5, 5, 5, 5, 5, 5, 9_o

上列五個選項各有9個數值,則:

- (1)何者的標準差為最大?
- (2)何者的標準差為最小?
- (A) $\sigma = 2.581$ (B) $\sigma = 2.514$ (C) $\sigma = 3.771$ (D) $\sigma = 3.266$ (E) $\sigma = 1.885$ 亦可直接從資料分散程度判斷出

- 3.若 a、b、c、d、e 的中位數為 2,全距為 15,則-3a+7、-3b+7、-3c+7、-3d+7、-3e+7的中位數為_____。
 - (解) 新中位數 = $-3 \times 2 + 7 = 1$, 新全距 = $|-3| \times 15 = 45$
- 4.若U=2x+5,V=-3y+7,且 x 與 y 的相關係數為 0.6,則可推得 U 與 V 的相關係數 為 ______。
 - $(U,V) = \frac{2 \times (-3)}{|2| \times |-3|} \times r(x,y) = -0.6$
- 5.一組資料 (x_i, y_i) , $\mu_x = 3$, $\mu_y = 5$, $\sigma_x = 2$, $\sigma_y = 4$, 已知 y 對 x 之迴歸直線y = ax + b, 而 x,

y 相關係數為 r。若迴歸線過 (2,6),則 r = ,數對 (a,b) = 。

直線過(3,5)及(2,6),斜率 $a = \frac{6-5}{2-3} = -1$,點代入得 $5 = -3 + b \implies b = 8$

又斜率 $-1 = r \times \frac{\sigma_y}{\sigma_x} = r \times \frac{4}{2}$ \Rightarrow $r = -\frac{1}{2}$

6.統計某班 30 位學生的數學成績 (x) 與英文成績 (y) ,結果得到平均數、標準差與相關係數如下: $\mu_x=60$, $\mu_y=70$, $\sigma_x=8$, $\sigma_y=10$, r=0.8 ,求:

- (1)英文成績(y)對數學成績(x)的迴歸直線為。
- (2)若班上某位同學數學成績為 70 分,請預測此生的英文成績為 分。
- (1) $y 70 = 0.8 \times \frac{10}{8} (x 60)$ $\Rightarrow y = x + 10$ (2) y = 70 + 10 = 80

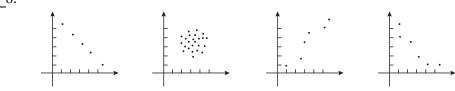
二、單一選擇題(共3題,每題5分)

_____7.某公司在開創初期創下不錯的業績,若下列五個選項內的百分比代表往後每期 該公司業績的成長率,請注意各選項的成長率之和均為 1,試問哪個選項可使 公司在末期的業績為最大值?

 $(A)\,-10\%$, ~10% $~(B)\,-10\%$, -10% , 10% , 10% $~(C)\,-10\%$, -10% , 20%

- (D) -20% , 10% , 10% (E) -20% , 20%
- (A)末期=初期×0.9×1.1,為0.99倍
 - (B)末期=初期× $0.9 \times 0.9 \times 1.1 \times 1.1$,為 $(0.99)^2 = 0.9801$ 倍
 - (C)末期=初期×0.9×0.9×1.2,為0.972倍
 - (D)末期=初期×0.8×1.1×1.1,為0.968倍
 - (E)末期=初期×0.8×1.2,為0.96倍

∴選(A)



上面四個散布圖中,相關次序大小順序何者正確?

(A) $r_a > r_b > r_c > r_d$ (B) $r_c > r_b > r_d > r_a$ (C) $r_c > r_d > r_b > r_a$ (D) $r_b > r_c >$

 $r_d > r_a$ (E) $r_a > r_d > r_c > r_b$ 。 (麗) $r_a = -1$, $r_b = 0$, $0 < r_c < 1$, $-1 < r_d < 0$ $r_c > r_b > r_d > r_a$, 選(B)

- 9.下列各敘述何者錯誤?
 - (A)相關係數 r 必有 $|r| \le 1$ (B)相關係數不受單位的影響 (C)迴歸線必過原點 (D)迴歸線必過 (μ_x, μ_y) (E)相關係數與迴歸線之斜率同號。
 - (m) 迴歸線必過 (μ_x, μ_y) ,未必通過原點

迴歸線斜率= $r \cdot \frac{\sigma_y}{\sigma_x}$ $:: \sigma_y > 0$, $\sigma_x > 0$:: 斜率與 r 同號 , 故選(C)

三、多重選擇題(共2題,每題5分)

(A)
$$M_a = a_3$$
, $M_b = b_3$ ∴ $0 < a_3 - b_3 < 1$ ∴ $0 < M_a - M_b < 1$, \triangle

(B)(C):
$$D_a = a_5 - a_1$$
, $D_b = b_5 - b_1$ ∴ $D_a - D_b = (\underbrace{a_5 - b_5}_{0 \sim 1}) - (\underbrace{a_1 - b_1}_{0 \sim 1})$, $a_5 - b_5 = (\underbrace{a_5 - b_5}_{0 \sim 1}) - (\underbrace{a_1 - b_1}_{0 \sim 1})$,

 $D_b < 1$.: (B)不合 . (C)合

(D)(E)
$$\mu_a - \mu_b = \frac{a_1 + a_2 + a_3 + a_4 + a_5}{5} - \frac{b_1 + b_2 + b_3 + b_4 + b_5}{5} = \frac{(a_1 - b_1) + (a_2 - b_2) + \dots + (a_5 - b_5)}{5}$$

$$\therefore 0 < \mu_a - \mu_b < 1 \text{ , (D)(E) 皆合}$$

∴選(A)(C)(D)(E)

- $_{-}$ 11.有 100 個學生的數學段考成績,都在 0 分到 100 分的範圍內,先計算出全距 D_{1} 、 算術平均數 μ_{1} 、標準差 σ_{1} 之後,再以 10 分為組距分成 10 組,並以分組後的資料計算全距 D_{2} 、算術平均數 μ_{2} 、標準差 σ_{2} 。請問下列哪些選項有可能發生? (A) $D_{1} > D_{2}$ (B) $\mu_{1} > \mu_{2}$ (C) $\sigma_{1} > \sigma_{2}$ (D) D_{1} 與 D_{2} 相差 15 (E) μ_{1} 與 μ_{2} 相差 8。
 - (解) (A)若最高分為 93,最低分為 39,則 $D_1 = 93 39 = 54$,而 $D_2 = 100 30 = 70$ ∴應為 $D_1 < D_2$
 - (B)若每人成績的個位數均在 5~9 之間,則 $\mu_1 > \mu_2$,合

- (C)若高分群的成績個位數均為 9,低分群的成績個位數均為 0,則原始成績的離差平方和較大,可使 $\sigma_1 > \sigma_2$ 成立
- (D)若最高分為 94,最低分為 39,則 $D_2 D_1 = (100 30) (94 39) = 70 55 = 15$,合
- (E): μ_2 是以組中點來計算 μ_2 , μ_2 , μ_2 , μ_2 , μ_2 , μ_2 , μ_2 ,不合

四、填充題(共5格,每格5分)

∴選(B)(C)(D)

12.二十個正數 a_1 、 a_2 、…、 a_{20} ,在開根號乘以 10 後 $10\sqrt{a_1}$ 、 $10\sqrt{a_2}$ 、…、 $10\sqrt{a_{20}}$ 的算術平均數為 35,標準差為 10,求原來 a_1 、 a_2 、…、 a_{20} 的算術平均數為 。

已知
$$\sqrt{\frac{100a_1+100a_2+\cdots+100a_{20}-20\times35^2}{20}} = 10$$
,平方得 $100(a_1+a_2+\cdots+a_{20})-24500=2000$

$$\therefore a_1 + a_2 + \dots + a_{20} = 265$$
,所求 = $\frac{a_1 + a_2 + \dots + a_{20}}{20} = \frac{265}{20} = 13.25$

13.有 10 筆資料如下表:

х	10	5	1	6	6	3	4	6	5	4
у	5	8	7	8	10	6	10	8	7	11

- (1)求 x 與 y 的相關係數為 。
- (2)求 y 對 x 的迴歸直線方程式 L 為。
- $\mu_x = \frac{1}{10} \sum_{i=1}^{10} x_i = 5 , \ \mu_y = \frac{1}{10} \sum_{i=1}^{10} y_i = 8$

$x_i - \mu_x$	5	0	-4	1	1	-2	-1	1	0	-1	
$y_i - \mu_y$	-3	0	-1	0	2	-2	2	0	-1	3	
$(x_i - \mu_x)(y_i - \mu_y)$	-15	0	4	0	2	4	-2	0	0	-3	-10
$(x_i - \mu_x)^2$	25	0	16	1	1	4	1	1	0	1	50
$(y_i - \mu_y)^2$	9	0	1	0	4	4	4	0	1	9	32

$$(1) r = \frac{\sum_{i=1}^{10} (x_i - \mu_X) (y_i - \mu_Y)}{\sqrt{\sum_{i=1}^{10} (x_i - \mu_X)^2 \cdot \sum_{i=1}^{10} (y_i - \mu_Y)^2}} = \frac{-10}{\sqrt{50 \times 32}} = -\frac{1}{4} = -0.25$$

(2)迴歸直線方程式為
$$(y - \mu_y) = b(x - \mu_x)$$
,其中 $\mu_x = 5$, $\mu_y = 8$, $b = \frac{\sum_{i=1}^{10} (x_i - \mu_x)(y_i - \mu_y)}{\sum_{i=1}^{10} (x_i - \mu_x)^2} = \frac{-10}{50} = -\frac{1}{5}$
故迴歸直線為 $y - 8 = -\frac{1}{5}(x - 5)$ \Rightarrow $L : y = -\frac{1}{5}x + 9$

14.10 筆資料 (x_i, y_i) , i=1、2、...、10,其中 $\sum_{i=1}^{10} x_i = 450$, $\sum_{i=1}^{10} y_i = 1300$,

 $\sum_{i=1}^{10} x_i^2 = 21250$, $\sum_{i=1}^{10} y_i^2 = 171250$, $\sum_{i=1}^{10} x_i y_i = 59100$, 試求:

- $\mu_x = \frac{1}{10} \sum_{i=1}^{10} x_i = 45 , \ \mu_y = \frac{1}{10} \sum_{i=1}^{10} y_i = 130 ,$

$$\sum_{i=1}^{10} (x_i - \mu_x)^2 = \sum_{i=1}^{10} x_i^2 - 10\mu_x^2 = 21250 - 10 \cdot 45^2 = 1000$$

$$\sum_{i=1}^{10} (y_i - \mu_y)^2 = \sum_{i=1}^{10} y_i^2 - 10\mu_y^2 = 171250 - 10 \cdot 130^2 = 2250$$

$$(1)r = \frac{\sum_{i=1}^{10} (x_i - \mu_x)(y_i - \mu_y)}{\sqrt{\sum_{i=1}^{10} (x_i - \mu_x)^2 \sum_{i=1}^{10} (y_i - \mu_y)^2}} = \frac{\sum_{i=1}^{10} (x_i y_i) - 10\mu_x \mu_y}{\sqrt{1000 \cdot 2250}} = \frac{59100 - 10 \cdot 45 \cdot 130}{1500} = 0.4$$

- (2)迴歸線斜率= $\frac{\sum_{i=1}^{10}(x_i-\mu_x)(y_i-\mu_y)}{\sum_{i=1}^{10}(x_i-\mu_x)^2} = \frac{600}{1000} = \frac{3}{5}$
 - ∴y 對 x 之迴歸式為y 130 = $\frac{3}{5}$ (x 45) ⇒ $y = \frac{3}{5}$ x + 103