坐複	潜 1~4冊	5 排列、組合				班級:		座號: 得分:	
1.	(1)(10,9)		(2) 10	2.	(1) (E)		(2) (B)		(3) (C)(F)
3.	(1) (D)		(2) (A)		(3) (G)	4.	(D)	5.	1022
6.	(B)	7.	(C)	8.	(D)	9.	(B)(C)(E)	10.	. (C)(E)
11.	315	12.	56	13.	. 53	14.	7	15.	. 924

一、概念題(共10格,每格5分)

$1.a$ 、 $b \in Z$, $10 \ge a > b \ge 0$, 若:	
$(1)P_a^{10} = P_b^{10}$,則數對 $(a,b) =$	
(2) 若 $C_a^{10} = C_b^{10}$. $a+b=$	0

2.m、n 為非負整數,將下列(1)至(3)小題填入(A)至(F)的選項:(A)m 個相同物分給 n 個人的方法數 (B)m 個相異物取出 n 個的方法數 (C)m 種相異物取出 n 個的方法數

(D)m 種相異物選出 n 個可重複選取,排成一列的方法數 (E)m 個相異物取出 n 個排成一列的方法數 (F)n 個相同物分給 m 個人的方法數。

(1) 若 $m \ge n$	則 P_n^m 的涵義為_	。(單選
-------------------	-----------------	------

$$(2)$$
若 $m \ge n$,則 C_n^m 的涵義為。(單選)

$$(3)C_n^{m+n-1}$$
的涵義為。(多選)

3.m、n 為非負整數,將下列(1)至(3)小題填入(A)至(H)的選項(均為單選):

$$(A)\frac{m!}{n!(m-n)!} \quad (B)\frac{n!}{m!} \quad (C)\frac{m!}{n!} \quad (D)\frac{m!}{(m-n)!} \quad (E)\frac{n!}{m!(m-n)!} \quad (F)n^m \quad (G)m^n \quad (H)\frac{m!}{m} \circ$$

- (1)若 $m \ge n$,則 $P_n^m =$ _____。
- (2)若 $m \geq n$,則 $C_n^m =$ _____。

(3)m 種相異物取出 n 個可重複選取,排成一列的方法數為_____。

4.
$$m$$
、 $n \in \mathbb{N}$,則 $H_n^m =$ _____。
(A) C_n^{m+n} (B) C_{n-1}^{m+n} (C) C_{n+1}^{m+n} (D) C_n^{m+n-1} (E) C_n^{m+n+1} 。

$$(1)c_n$$
 $(B)c_{n-1}$ $(C)c_{n+1}$ $(B)c_n$ $(B)c_n$

$$5.C_1^{10} + C_2^{10} + C_3^{10} + C_4^{10} + C_5^{10} + C_5^{10} + C_6^{10} + C_7^{10} + C_8^{10} + C_9^{10} = \underline{\hspace{1cm}}$$

(解)
$$(1+1)^{10} = C_0^{10} + C_1^{10} + \dots + C_0^{10} + C_{10}^{10} \Rightarrow 1024 = 1 + 所求 + 1 \Rightarrow 所求 = 1022$$

- `	、車一選擇題(共3題,每題5分)
	6.7 件相同的物品,全分給 10 個人,每人可兼得,則其分法有幾種?
	(A) C_7^{10} (B) C_7^{16} (C) C_{10}^{16} (D) 10^7 (E) 7^{10} $_{\circ}$
	(解) 即 $x_1 + x_2 + \cdots + x_{10} = 7$ 的非負整數解個數 二為 C_2^{16} ,選(B)

______7.自 8 冊不同的英文書與 6 冊不同的中文書中,取 2 冊英文書與 3 冊中文書 排在書架上,其方法有幾種?

(A)
$$P_2^8 \cdot P_3^6$$
 (B) $\mathcal{C}_2^8 \cdot \mathcal{C}_3^6 \cdot 2! \cdot 3!$ (C) $\mathcal{C}_2^8 \cdot \mathcal{C}_3^6 \cdot 5!$ (D) $\mathcal{C}_2^8 \cdot 2! + \mathcal{C}_3^6 \cdot 3!$ (E) $\mathcal{C}_5^{15} \cdot 5!$

即
$$C_2^8$$
 C_3^6 5! $:$ 選(C)取英文書取中文書 5 本書排成一列

8.我國的機車牌照為六位的字母與數字,原本前三位為英文字母、後三位為 0 至 9 的數字且個位不為 4,如 UKX-571。經過十幾年後號碼不敷使用, 因此又設計出前三位為 0 至 9 的數字且個位不為 4,末三位為英文字母,如 425-NQG。請問在這些條件之下,我國的機車牌照共可發出多少面? $(A)26\times25\times24\times900 \qquad (B)26\times26\times26\times1000 \quad (C)26\times26\times26\times900 \\ (D)26\times26\times26\times900\times2 \quad (E)(26\times26\times900)^2$ 。

(四) $(26 \times 26 \times 26) \times (10 \times 10 \times 9) + (10 \times 10 \times 9) \times (26 \times 26 \times 26) = 26 \times 26 \times 26 \times 900 \times 2$ 前三位為字母 末三位為數字 末三位為字母 ∴選(D)

三、多重選擇題(共2題,每題5分)

______9.若數列 $\langle a_n \rangle$ 滿足 $a_1 \le a_2 \le a_3 \le \cdots \le a_n$,則稱為「遞增」,請問下列各選項哪 些正確?

 $(A) P_7^7 = 1$ $(B) C_7^{10} = C_3^{10}$ (C)數列 P_1^n , P_2^n , P_3^n , ... , P_n^n 為遞增的數列(D)數列 C_1^n 、 C_2^n 、 C_3^n 、... 、 C_n^n 為遞增的數列(E)數列 C_1^{n+1} 、 C_1^{n+2} 、 C_1^{n+3} 、... 、 C_3^{2n} 為遞增的數列。

(A)
$$P_7^7=7!=5040$$
,不合
$$(B)C_7^{10}=\frac{10!}{7!3!}=C_3^{10}$$
,合
$$(C)$$
即 n 、 $n(n-1)$ 、 $n(n-1)(n-2)$ 、...、 $n!$, 為遞增,合
$$(D)$$
應先遞增再遞減,不合
$$(E)$$
即 $n+1$ 、 $(n+1)$ × $\frac{n+2}{2}$ 、 $(n+1)$ × $\frac{n+2}{2}$ × $\frac{n+3}{3}$ 、...、為遞增,合

5-1 103MH408T

∴選(B)(C)(E)

- _____10.關於 $(x-rac{1}{r})^{10}$ 的展開式中,下列選項哪些正確?
 - (A)共有 10 項
- $(B)x^4$ 項的係數為 C_3^{10}
- (C)常數項為-252
- $(D)x^{-10}$ 項的係數為-1 (E)x 項的係數為 0。
- (A)應有 11 項,為 $C_0^{10}x^{10} + C_1^{10}x^9 \left(-\frac{1}{x}\right)^1 + C_2^{10}x^8 \left(-\frac{1}{x}\right)^2 + \dots + C_{10}^{10} \left(-\frac{1}{x}\right)^{10}$

$$(B)x^4$$
項= $C_3^{10}x^7 \cdot \left(-\frac{1}{r}\right)^3 = -C_3^{10}x^4$,應為 $-C_3^{10}$,不合

(C)常數項=
$$C_5^{10}x^5 \cdot \left(-\frac{1}{x}\right)^5 = -C_5^{10} = -252$$
,合

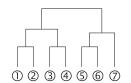
$$(D)x^{-10}$$
項= $C_{10}^{10}\left(-\frac{1}{x}\right)^{10} = x^{-10}$,應為 1,不合

(E)展開式依次為 10 次,8 次,6 次, \dots $\therefore x$ 項係數為 0,合

∴選(C)(E)

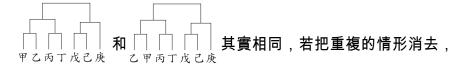
四、填充題(共5格,每格5分)

11.有七支球隊要排入右邊的賽程表,現在做好①~⑦的號碼牌放入



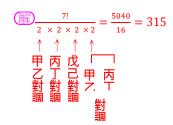
籤筒,再請七個球隊隊長來抽籤。若把抽籤的結果填入右邊的空

格,則會有7! = 5040種安排的情形,但其中有許多是重複的,如



則共可排出 種不同的賽程。

_**種不同的賽程。** 《另解》 $C_4^7 C_3^3 \times \frac{c_2^4 c_2^2}{2} \times C_2^3 C_1^1 = 35 \times 3 \times 3 = 315$



- 12.自來水公司因為輸水管路施工,必須輪流供水,若計畫在接下來的 10 天中選擇 3 天停止供水,為避免影響民生,該停水的 3 天不得相連,則自來水公司共有______種選擇的方式。
 - (解) 有 7 天供水,共 8 個空隙,取 3 個空隙使其停水 \therefore 共有 $C_3^8 = 56$ 種選擇方式
- 13.有 1、1、1、2、2、3、4 共七個數字,若從中取出四個排成四位數,請問共可排成____

種不同的偶數。

(解)依同異來討論,且個位為2或4才可

全異:1、2、3、4,有12種

恰三同
$$\begin{cases} 1, & 1, & 1, & 2 \\ 1, & 1, & 1, & 4 \end{cases}$$
 , 共 2 種

兩同兩同: 1、1、2、2, $\pm \frac{3!}{2!} = 3$ 種

兩同兩異

∴共種12 + 2 + 3 + 36 = 53

- |a| = |a| = |a| = |a| 14.行列式 |a| = |a| ,其中 |a| ,其中 |a| 。 |a| 。 |a| ,其中 |a| 。 |a| 。
 - 即ad bc

∴有 0、±1、±2、±3, 共 7 種

15.把 $(x+y)^{12}$ 乘開整理,發現有一項的係數和其他項的係數都不同,請問這一項的係數 為。 | 該項為 $C_6^{12}x^6y^6 = \frac{12\cdot11\cdot10\cdot9\cdot8\cdot7}{6\cdot5\cdot4\cdot3\cdot2\cdot1}x^6y^6 = 924x^6y^6$::所求為 924