1-1 銳角的正弦、餘弦及正切

基礎題

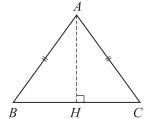
- 1. 右圖是由兩個直角三角形堆疊而成,且 \overline{OC} =8,試問 \overline{AB} 的 長爲
 - $(1)\sqrt{3}$ (2) 2 (3) 2 $\sqrt{3}$ (4) 4.

解:直角 $\triangle OBC$ 中,因 $\overline{OB} = \overline{OC} \cos 60^{\circ} = 4$, 直角 $\triangle OAB$ 中,因 $\overline{AB} = \overline{OB} \sin 30^{\circ} = 2$,

- 2. 有一等腰三角形底邊 \overline{BC} 的長為 10,頂角為 72°,試問 $\triangle ABC$ 的 高 \overline{AH} 長為
 - $(1)5\sin 36^{\circ}$ $(2)5\sin 54^{\circ}$ $(3)5\tan 36^{\circ}$ $(4)5\tan 54^{\circ}$.

解: 直角 $\triangle ABH$ 中, $\angle BAH = 36^{\circ}$, $\angle ABH = 54^{\circ}$,

$$\tan 54^{\circ} = \frac{\overline{AH}}{\overline{BH}} = \frac{\overline{AH}}{5}$$
, $\overline{AH} = 5 \tan 54^{\circ}$,



- 3. 已知 $0 < \alpha < 45^{\circ} < \beta < 90^{\circ}$,試問下列何者正確?
 - $(1)\sin\alpha < \sin\beta \quad (2)\cos\alpha < \cos\beta \quad (3)\sin\alpha > \cos\alpha \quad (4)\sin\beta < \cos\beta .$

解:(1) $\sin \theta$ 隨 θ 增大而增大,知 $\sin \alpha < \sin \beta$.

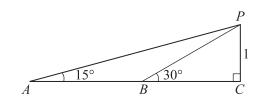
 $(2)\cos\theta$ 随 θ 增大而減少,知 $\cos\alpha > \cos\beta$.

- 4. 試求下列銳角 θ 的值:
 - $(1)\sin\theta = \cos 41^\circ$. $(2)\cos\theta = \sin 37^\circ$.

解:(1) $\cos 41^\circ = \cos(90^\circ - 49^\circ) = \sin 49^\circ$,得 $\theta = 49^\circ$. (2) $\sin 37^\circ = \sin(90^\circ - 53^\circ) = \cos 53^\circ$,得 $\theta = 53^\circ$.

5. 請用右圖,求得 tan 15°與 tan 75°的值.

解:直角 $\triangle PBC$ 中, 令 $\overline{BC} = \sqrt{3}$, $\overline{BP} = 2$, $\overline{PC} = 1$, 等腰 $\triangle PAB$ 中, $\overline{AB} = \overline{BP} = 2$,

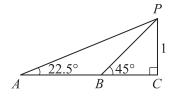


$$\overline{AC} = \overline{AB} + \overline{BC} = 2 + \sqrt{3}$$
,
得 $\tan 15^\circ = \frac{1}{2 + \sqrt{3}} = 2 - \sqrt{3}$, 又 $\angle APC = 75^\circ$, 得 $\tan 75^\circ = \frac{\overline{AC}}{\overline{PC}} = 2 + \sqrt{3}$.

6. 請用右圖, 求得 tan 22.5°與 tan 67.5°的值.

解:直角
$$\triangle PBC$$
 中,令 \overline{BC} = 1, \overline{BP} = $\sqrt{2}$, \overline{PC} = 1, 等腰 $\triangle PAB$ 中, \overline{AB} = \overline{BP} = $\sqrt{2}$, \overline{AC} = \overline{AB} + \overline{BC} = $\sqrt{2}$ + 1, 得 $\tan 22.5^{\circ}$ = $\frac{1}{\sqrt{2}+1}$ = $\sqrt{2}$ - 1,

又
$$\angle APC = 67.5^{\circ}$$
 ,得 $\tan 67.5^{\circ} = \frac{\overline{AC}}{\overline{PC}} = \sqrt{2} + 1$.



進階題

1. 試求下列各式的值:

$$(1)\cos^2 41^\circ + \cos^2 49^\circ$$
. $(2)\sin^2 15^\circ + \sin^2 35^\circ + \sin^2 55^\circ + \sin^2 75^\circ$.

解:
$$(1)\cos^2 41^\circ + \cos^2 49^\circ = \cos^2 41^\circ + \sin^2 41^\circ = 1$$
.

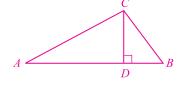
(2)
$$\sin^2 15^\circ + \sin^2 35^\circ + \sin^2 55^\circ + \sin^2 75^\circ$$

= $\sin^2 15^\circ + \sin^2 35^\circ + \cos^2 35^\circ + \cos^2 15^\circ = 2$.

2. 在 $\triangle ABC$ 中, \overline{AC} =17, $\tan A = \frac{8}{15}$, $\tan B = \frac{4}{3}$, $\overline{CD} \perp \overline{AB}$,試求 \overline{AB} 的長.

解:
$$\tan A = \frac{8}{15}$$
 , 知 $\sin A = \frac{8}{17}$, 得 $\overline{AD} = 15$, $\overline{CD} = 8$,

由
$$\tan B = \frac{4}{3}$$
,得 $\overline{BD} = 6$,故 $\overline{AB} = \overline{AD} + \overline{BD} = 21$.



3. 設一圓的半徑爲1, 試問其外接正八邊形的周長.

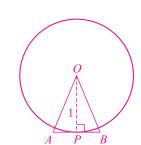
(已知
$$\tan 22.5^{\circ} = \sqrt{2} - 1$$
 , $\tan 67.5^{\circ} = \sqrt{2} + 1$)

解:
$$\triangle OAB$$
 中, $\overline{OP} \perp \overline{AB}$, $\angle AOB = 45^{\circ}$,

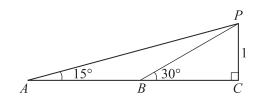
$$\overline{OP} = 1$$
, $\angle AOP = 22.5^{\circ}$, $\tan 22.5^{\circ} = \frac{\overline{AP}}{\overline{OP}} = \frac{\overline{AP}}{1}$,

得
$$\overline{AP} = \sqrt{2} - 1$$
, $\overline{AB} = 2(\sqrt{2} - 1)$,

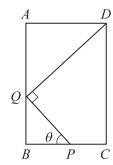
故正八邊形周長爲 $8\overline{AB} = 16(\sqrt{2} - 1)$.



- 4. 已知 $(\sqrt{6} + \sqrt{2})^2 = 8 + 4\sqrt{3}$,利用右圖,試求:
 - $(1)\overline{AP}$ 的長.
 - (2) sin 15° 與 cos 15° 的值.



5. 長方形 ABCD中, $\angle PQD = 90^{\circ}$, $\overline{PQ} = 3$, $\overline{QD} = 5$, $\angle BPQ = \theta$, 若 $\overline{CD} = a\sin\theta + b\cos\theta$, 則 a = 3 , b = 5 .



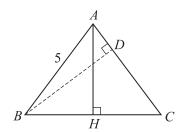
- 6. 設 θ 爲一銳角且 $\sin \theta \cos \theta = \frac{1}{5}$,試求下列各式的值:
 - $(1)\sin\theta\cos\theta$. $(2)\sin\theta$.

7. 試問 $\sin^2 10^\circ + \sin^2 20^\circ + \sin^2 30^\circ + \sin^2 40^\circ + \sin^2 50^\circ + \sin^2 60^\circ + \sin^2 70^\circ + \sin^2 80^\circ$ 的和.

解:由餘角關係式
$$\sin(90^\circ - \theta) = \cos \theta$$
, $\sin 80^\circ = \cos 10^\circ$, $\sin 70^\circ = \cos 20^\circ$, $\sin 60^\circ = \cos 30^\circ$, $\sin 50^\circ = \cos 40^\circ$, 原式 = $(\sin^2 10^\circ + \sin^2 80^\circ) + (\sin^2 20^\circ + \sin^2 70^\circ) + (\sin^2 30^\circ + \sin^2 60^\circ) + (\sin^2 40^\circ + \sin^2 50^\circ)$ = $(\sin^2 10^\circ + \cos^2 10^\circ) + (\sin^2 20^\circ + \cos^2 20^\circ) + (\sin^2 30^\circ + \cos^2 30^\circ) + (\sin^2 40^\circ + \cos^2 40^\circ)$

8. 等腰 $\triangle ABC$ 中, \overline{AB} =5, \overline{AC} =5, \overline{BC} =6,試求各式的值: (1) tan B . (2) tan A .

解:(1)因
$$\overline{BC} = 6$$
,知 $\overline{BH} = 3$, $\overline{AH} = 4$, 故 $\tan B = \frac{4}{3}$.
$$(2) \triangle ABC$$
 的面積 = $\frac{1}{2} \times \overline{BC} \times \overline{AH} = 12$,
$$\triangle = \frac{1}{2} \times \overline{AC} \times \overline{BD}$$
, $12 = \frac{1}{2} \times 5 \times \overline{BD}$, $\overline{BD} = \frac{24}{5}$,
$$\overline{BD} = \frac{7}{5}$$
 ,故 $\tan A = \frac{24}{7}$.



9. 已知 θ 爲一銳角且 $\sin\theta+2\cos\theta=2$,試求各式的值:

$$(1)\cos\theta$$
. $(2)\sin\theta$.

解:
$$(1)\sin\theta = 2 - 2\cos\theta$$
,兩邊平方得 $\sin^2\theta = (2 - 2\cos\theta)^2$,

代入
$$\sin^2 \theta + \cos^2 \theta = 1$$
, 得 $5\cos^2 \theta - 8\cos \theta + 3 = 0$, $\cos \theta = \frac{3}{5}$ 或 1 (不合).

$$(2)\sin\theta = 2 - 2\cos\theta = \frac{4}{5}.$$

情境模擬題

1. <u>大明</u>以 6 張同樣大小的正五邊形紙片在平面上拼成一朵花,已知正五邊形的邊長爲 1,則兩片花瓣間的距離 $\overline{FG} = \frac{\sqrt{5}-1}{2}$.

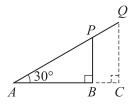
$$(\sin 18^\circ = \frac{\sqrt{5} - 1}{4})$$

解:因正五邊形的每一內角爲 108° ,知 $\angle FAG = 36^{\circ}$

$$\boxplus \overline{AG} = 1$$
, $\angle GAM = 18^{\circ}$,

得
$$\overline{FG} = 2\overline{GM} = 2 \cdot \overline{AG} \cdot \sin 18^\circ = \frac{\sqrt{5} - 1}{2}$$
.

2. 將一長爲 8 公尺的竹竿,斜靠在垂直地面高爲 3 公尺的牆頭,有部分伸出牆外.假設竹竿與地面成夾角 30° ,竹竿伸出牆外部分,於日正當中時,在地面的投影爲 $_{}$.

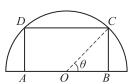


解: $\triangle ABP$ 中, $\overline{BP} = 3$, 得 $\overline{AB} = 3\sqrt{3}$,

$$\triangle ACO + , \overline{AO} = 8 , \overline{AC} = 4\sqrt{3} ,$$

投影
$$\overline{BC} = \overline{AC} - \overline{AB} = 4\sqrt{3} - 3\sqrt{3} = \sqrt{3}$$
.

3. 在半徑爲 1 的半圓內作一矩形 ABCD,且一邊 \overline{AB} 落在直徑上,已知矩 形 ABCD 的周長爲 4,試求矩形 ABCD 的面積 .



解:
$$\overline{OC} = 1$$
, 得 $\overline{OB} = \cos \theta$, $\overline{BC} = \sin \theta$,

得矩形周長為
$$2\sin\theta + 4\cos\theta = 4$$
,

即
$$\sin \theta + 2\cos \theta = 2$$
, 得 $\cos \theta = \frac{3}{5}$, $\sin \theta = \frac{4}{5}$,

矩形
$$ABCD$$
 的面積為 $\overline{AB} \cdot \overline{BC} = 2\cos\theta \cdot \sin\theta = \frac{24}{25}$