高雄市明誠中學 高一數學平時測驗 日期:92.10.08							
範	東久里なしのから	班級	t t	姓			
圍	整數+ans	座號	-	名			

- 一、選擇題(每題 5 分)
- 1. 下列那些是 3 的倍數?

(A) 7231×251 (B) $216^3 + 712^3$ (C) $124^3 - 214^3$ (D) 93275 (E) $3^{1999} + 1$

Ans: (C)

解析:

(A): 7231 與 251 皆不是 3 的倍數 : 7231 × 251 不是 3 的倍數

(B): 216^3 爲 3 的倍數 712^3 不是 3 的倍數 : $216^3 + 721^3$ 不是 3 的倍數

(D): 9+3+2+7+5=26 不是 3 的倍數 : 93275 不是 3 的倍數

(E): 3^{1999} 是 3 的倍數,1 不是 3 的倍數 : 3^{1999} + 1 不是 3 的倍數

2. 下列各數,何者爲質數?(A)667 (B)677 (C)687 (D)767 (E)1547

Ans: (B)

解析:

 $(A) 667 = 23 \times 29$,故為合成數

- (B) $p^2 \le 677$ 的質數p有 2,3,5,7,11,13,17,19,23 分別去除 677,皆不能整除,故 677 爲質數
- (C) 687 = 3 × 229, 故爲合成數
- (D) $767 = 13 \times 59$,故爲合成數
- (E) 1547 = 7 × 13 × 17, 故為合成數
- 3. 已知六位數 3ab548 爲 99 之倍數,則 a + 2b = (A) 10 (B) 9 (C) 8 (D) 7 (E) 6

Ans: (C)

解析:

3ab548 爲 99 的倍數 ∴ 3ab548 爲 9 的倍數亦爲 11 的倍數

 \therefore 3ab548 為 9 的倍數 \therefore 9 | 3 + a + b + 5 + 4 + 8

 \Rightarrow 9 | a+b+20 \Rightarrow 9 | a+b+2 \Rightarrow a+b=7 \neq 16 ······①

又 3ab548 爲 11 的倍數 : 11 | 3 - a + b - 5 + 4 - 8

 \Rightarrow 11 | b-a-6 \Rightarrow b-a=6 $\overrightarrow{y}-5\cdots$

由①②知
$$\begin{cases} a+b=7 \\ b-a=6 \end{cases}$$
 或 $\begin{cases} a+b=7 \\ b-a=-5 \end{cases}$ 或 $\begin{cases} a+b=16 \\ b-a=6 \end{cases}$ 或 $\begin{cases} a+b=16 \\ b-a=-5 \end{cases}$

則由第二組知 a = 6, b = 1 \Rightarrow a + 2b = 6 + 2 = 8

4. 設m, $n \in N$ 且m > 1,若 $m \mid (35n + 26)$, $m \mid (7n + 3)$,則m =

(A) 5 (B) 7 (C) 11 (D) 13 (E) 17

Ans: (C)

解析:

 $m \mid (35n + 26) \not \perp m \mid (7n + 3) \implies m \mid (35n + 26) - 5(7n + 3) = 11, \ \not \subseteq m > 1 \quad \therefore \quad m = 11$

- 5. <u>李</u>家三兄弟寄宿在外,大哥每 5 天回家一次,二哥每 7 天回家一次,三弟每 15 天回家一次;已知今年(1999 年)的五月九日(母親節)同時回家相聚後,三兄弟下一次再度同時回家相聚的時間是今年的
 - (A) 8 月 8 日 (B) 8 月 20 日 (C) 8 月 21 日 (D) 8 月 22 日 (E) 8 月 23 日

Ans: (D)

解析:

- ∴ [5,7,15] = 105 ∴ 三兄弟每次同時回家相隔 105 天 而 5 月 10 日至 5 月 31 日有 22 天,6 月有 30 天 7 月有 31 天,8 月有 31 天,
- ∴ 由 5 月 10 日到 8 月 22 日共有 22 + 30 + 31 + 22 = 105 天
- :. 下次返家時間爲8月22日

二、填充題:(每題10分)

- 1. (1) $a \cdot b \in N \coprod (2a+b)(a-b) = 8 \cdot \Re a = ____ \cdot b = ___ \circ$
 - (2) $a \in Z$,若 $a^4 6a^2 + 25$ 爲質數,則 $a = ____$ 。
 - (3) 設 $p = (a^2 22a + 121)(a^2 2a + 69)$,若 $a \in N$,且p爲一質數,則a =
 - (4) 設 $n \in \mathbb{N}$,若 $6n^2 19n + 10$ 爲質數,求n之值=

Ans: (1) a = 3, b = 2 (2) ± 2 (3) 10 (4) 3

解析:

(1)
$$a, b \in N, (2a+b)(a-b) = 8$$

$$(2) \stackrel{\triangle}{\Box} p = a^4 - 6a^2 + 25 = a^4 + 10a^2 + 25 - 16a^2$$

=
$$(a^2 + 5)^2 - (4a)^2 = (a^2 + 5 - 4a)(a^2 + 5 + 4a)$$

$$\Rightarrow$$
 ① $a^2 + 5 - 4a = 1$ \Rightarrow $a^2 - 4a + 4 = 0$, $(a - 2)^2 = 0$, $a = 2$

或 ②
$$a^2 + 5 + 4a = 1$$
 ⇒ $a^2 + 4a + 4 = 0$, $(a+2)^2 = 0$, $a = -2$

 \therefore $a = \pm 2$

(3):
$$p = (a^2 - 22a + 121)(a^2 - 2a + 69)$$
 為質數

∴
$$a^2 - 22a + 121 = 1$$
 $\overrightarrow{\boxtimes} a^2 - 2a + 69 = 1$

$$\Rightarrow a^2 - 22a + 120 = 0 \ \text{gg}a^2 - 2a + 68 = 0$$

$$\Rightarrow$$
 $(a-10)(a-12) = 0$ $\overrightarrow{\boxtimes} a = 1 \pm \sqrt{67} i \notin N$

∴
$$a = 10$$
 或 12

①若
$$a = 10$$
,則 $p = a^2 - 2a + 69 = 100 - 20 + 69 = 149$ 爲質數

②若
$$a = 12$$
,則 $p = a^2 - 2a + 69 = 144 - 24 + 69 = 189 = 7 \times 27$ 不爲質數,∴ $a = 10$

∴
$$3n-2=1$$
 或 $2n-5=1$ ⇒ $n=1$ 或 $n=3$

2. 設
$$a \in N$$
,且 $\frac{3a+17}{2a-3} \in N$,則 $a = \underline{\hspace{1cm}}$ 。

Ans: 2或23

解析:

$$\frac{3a+17}{2a-3} \in N \implies 2a-3 \mid 3a+17 \perp 2a-3 \mid 2a-3 \mid$$

$$\Rightarrow$$
 2a - 3 | 2 (3a + 17) - 3(2a - 3) \Rightarrow 2a - 3 | 43

∴
$$2a-3=1$$
 或 43 , $汉$ $a ∈ N$ ∴ $a=2$ 或 23

3. $設n \in \mathbb{N}$,若 $2n + 5 \mid 3n - 17$,則所有的n値爲

Ans: 1, 22

解析:

$$\therefore$$
 2*n* + 5 | 3*n* - 17 ∇ 2*n* + 5 | 2*n* + 5

$$\therefore$$
 2n + 5 | 3(2n + 5) - 2(3n - 17) \Rightarrow 2n + 5 | 49

$$\therefore$$
 $n \in \mathbb{N}$ \therefore $2n+5=1$, 7, 49 \Rightarrow $n=1$, 22, -2 (不合)

4. 設 $a, b \in N$,以 5 除a餘 3,以 5 除b餘 2,則以 5 除 2 $a^2 + ab + b^2$,得餘數爲

Ans: 3

解析:

$$\frac{1}{6} a = 5x + 3, b = 5y + 2, x, y \in Z$$

$$2a^{2} + ab + b^{2} = 2(5x + 3)^{2} + (5x + 3)(5y + 2) + (5y + 2)^{2}$$

$$= 50x^{2} + 60x + 18 + 25xy + 10x + 15y + 6 + 25y^{2} + 20y + 4$$

$$= 50x^{2} + 60x + 25xy + 10x + 15y + 25y^{2} + 20y + 18 + 6 + 4$$

$$= 5k + 28 = 5k + 25 + 3$$

... 以 5 除
$$2a^2 + ab + b^2$$
 得餘數爲 3

5. $a \, , \, b \in \mathbb{N} \, , \, a + 2b = 126 \, , \, [a \, , \, b] = 140 \, , \, 則數對<math>(a \, , \, b) = \underline{\hspace{1cm}}$

Ans: (70, 28)

解析:

$$\pm \begin{cases}
a+2b=126 \\
[a,b]=140
\end{cases} \Rightarrow \begin{cases}
d(m+2n)=126 \\
dmn=140
\end{cases}$$

∴
$$d$$
爲 126 , 140 的公因數 ∴ d | (126 , 140) = 14

(i)
$$d = 1$$
 時, $m + 2n = 126$, $mn = 140$ ⇒ $n^2 - 63n + 70 = 0$,∴ $n \notin N$,不合

(ii)
$$d=2$$
 時, $m+2n=63$, $mn=70$ \Rightarrow $2n^2-63n+70=0$,∴ $n \notin N$,不合

(iii)
$$d = 7$$
 時, $m + 2n = 18$, $mn = 20$ \Rightarrow $n^2 - 9n + 10 = 0$,∴ $n \notin N$,不合 或(iv) $d = 14$ 時, $m + 2n = 9$, $mn = 10$

$$\Rightarrow n = 2 \vec{\boxtimes} n = \frac{5}{2} (\vec{\wedge} \triangle) \Rightarrow m = 5$$

$$\therefore$$
 $a = 14 \times 5 = 70$, $b = 14 \times 2 = 28$

6. 設a,b均爲自然數,且a-b=34,[a,b] = 255,則數對(a,b) = _____。

Ans: (85, 51)

解析:

$$\therefore$$
 $a-b=34$ \therefore $hd-kd=34$ \Rightarrow $(h-k)d=34$

$$[a, b] = 255$$
 $hkd = 255$

:
$$(h-k, hk) = 1$$
 : $d = (34, 255) = 17$ $\Rightarrow \begin{cases} h-k=2 \\ hd = 15 \end{cases}$

$$\therefore$$
 $(h, k) = 1$ \therefore $h = 5$, $k = 3$, $to a = 85$, $b = 51$

7. 設 $a, b \in \mathbb{Z}$,滿足a > b,且(a, b) = 21,[a, b] = 378,則所有a的値之和 =

Ans: . 504

解析:

$$(a, b) = 21$$
 ... $a = 21u, b = 21v$ 目 u, v 万質, $u > v$

$$[a, b] = [21u, 21v] = 21[u, v] = 378$$
 \therefore $[u, v] = 18$

$$(u, v) = (18, 1), (9, 2), (-1, -18) \overrightarrow{y}(-2, -9)$$

... 所有
$$a$$
 的值之和 = $21(18 + 9 - 1 - 2) = 504$

8. (2993) 74687 的乘積除以 10 所得餘數爲____。

Ans: 7

解析:

利用(2993)4= …1 (個位數字爲1)

$$\therefore (2993)^{74687} = [(2993)^4]^{18671} \cdot (2993)^3 = (\cdots 1)^{18671} \cdot (\cdots 7)$$
$$= (\cdots 1) \cdot (\cdots 7) = \cdots 7$$

... (2993)⁷⁴⁶⁸⁷的個位數字為 7,除以 10 所得餘數為 7

Ans: 27

解析:

$$45 = 3^{2} \times 5$$

$$n = 2^{7} \times 3^{4} \times 5^{3}$$

$$\downarrow \qquad \downarrow \qquad \downarrow$$

$$2^{0} \quad 3^{2} \quad 5^{1}$$

$$2^{1} \quad 3^{3} \quad 5^{2}$$

$$2^{2} \quad 3^{4} \quad 5^{3}$$

∴ 方法共 3×3×3 = 27 種

0

Ans: 18

解析:

由輾轉相除法原理知

$$(a, b) = (b, 792) = (792, 378) = (378, 36) = 18$$

11. 設n = 113400,a為正整數,且 $n \mid a^3$,則a最小值為_____。

Ans: . 630

解析:

$$n = 113400 = 2^3 \times 3^4 \times 5^2 \times 7$$

- \therefore a為正整數且 $n \mid a^3$ \therefore a^3 最小値為 $2^3 \times 3^6 \times 5^3 \times 7^3$
- \therefore a最小值為 $2 \times 3^2 \times 5 \times 7 = 630$
- 12.1到1000的自然數中,
 - (1)爲 3 倍數,但不爲 2 倍數者有_____個。
 - (2)爲 3 倍數,但不爲 2 倍數,亦不爲 5 倍數者有 ______個。

Ans: (1) 167 (2) 134

解析:

(1)
$$\left[\frac{1000}{3}\right] - \left[\frac{1000}{6}\right] = 333 - 166 = 167$$

$$(2) \ \left[\frac{1000}{3}\right] - \left[\frac{1000}{6}\right] - \left[\frac{1000}{15}\right] + \left[\frac{1000}{30}\right] = 333 - 166 - 66 + 33 = 134$$

13. 設成功高中一年級學生人數在 1000 至 1500 人之間,今將學生各以 5、7、13 人分組皆 多出 3 人,則成功高中高一學生人數有______人。

Ans: 1368

解析:

學生人數是 5 ,7 ,13 的公倍數加 3 ,[5 ,7 ,13] = 455 ,則學生人數爲 455k + 3 因學生人數介在 1000 至 1500 人之間,則取 k = 3 ,有 $455 \times 3 + 3 = 1368$ 人

14. 有一個五位數 17a1b含有因數 5 與 9, 求此五位數爲。

Ans: 17010, 17910, 17415

解析:

17a1b 含有 5 及 9 的因數 :. b=0 或 5

①
$$b = 0$$
, $9 \mid 17a10 \implies 9 \mid 1 + 7 + a + 1 + 0 = 9 + a$ $\therefore a = 0$ $\neq 9$

②
$$b = 5$$
, $9 \mid 17a15$ \Rightarrow $9 \mid 1 + 7 + a + 1 + 5 = 14 + a$ \therefore $a = 4$

∴ 此五位數爲 17010, 17910, 17415

15. 天干地支記日是以天干(甲、乙、丙、丁、戊、己、庚、辛、壬、癸),地支(子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥)搭配,如甲子、乙丑、丙寅、…、癸亥,週期循環記日。已知民國89年10月17日是戊申日,推算民國90年1月24日(春節)以天干地支記日是_____日。

Ans: 丁亥

解析:

$$(31-17) + 30 + 31 + 24 = 99$$

16. 若x, $y \in N$,又 $\frac{5}{x} + \frac{7}{y} = 2$ 之解共有n組,這n組爲 (x_1, y_1) , (x_2, y_2) ,…, (x_n, y_n) ,則 $x_1 +$

$$x_2 + \cdots + x_n = \underline{\hspace{1cm}}$$

Ans: 34

解析:

$$\frac{5}{x} + \frac{7}{y} = 2$$
 \Rightarrow $2xy - 7x - 5x = 0$ \Rightarrow $x(2y - 7) - 5(y - \frac{7}{2}) = \frac{35}{2}$

同乘 2

$$\Rightarrow$$
 2x(2y-7) - 5(2y-7) = 35 \Rightarrow (2x-5)(2y-7) = 35

$$\Rightarrow \begin{cases} 2x - 5 = 1 & 5 & 35 & -1 & -5 & -35 & 7 & -7 \\ 2y - 7 = 35 & 7 & 1 & -35 & -7 & -1 & 5 & -5 \end{cases}$$

17. (1)求 6328 與 18645 之最大公因數。

(2)續上題,找出一組整數m,n使 6328m + 18645n = (6328,18645),則 數對(m,n) =

Ans: . (1) 113 (2) (56, -19)

解析:

(1)利用輾轉相除法

713/13/14/13/14/14								
a	6328	18645	b					
-2a+b	5989	12656	2 <i>a</i>					
3a-b	339	5989	-2a+b					
-53a + 18b	226	5763	17(3a-b)					
56a-19b	113	226	-53a + 18b					
		226						
		0						

$$\therefore$$
 (6328, 18645) = 113 \perp 113 = 6328 × 56 + 18645 × (-19)

$$(m, n) = (56, -19)$$