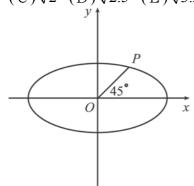
高雄市明誠中學 高二數學平時測驗 日期:92.02.26					
範	1-2 橢圓+Ans	班級		姓	
圍		座號		名	

- 一. 單一選擇題 (每題 5 分)
- 1、(D)若已知方程式 $x^2 + 4y^2 + 2x + 4y + k = 0$ 的圖形爲橢圓,則k的範圍爲何? (A)任何實數皆可 (B)k < 0 (C) $k \neq 0$ (D)k < 2 (E)k > 2

解析: $(x+1)^2 + (2y+1)^2 = -k+2$, -k+2 > 0. k < 2

 $2 \cdot (B)$ 在坐標平面上有一橢圓,它的長軸落在x 軸上,短軸落在y 軸上,長軸、短軸的長度分別為 $4 \cdot 2$ 。如圖所示,通過橢圓的中心 O 且與x 軸夾角為 45 度的直線在第一象限跟橢圓相交於 P。則此交點 P 與中心 O 的距離為 (A)1.5 $(B)\sqrt{1.6}$ $(C)\sqrt{2}$ $(D)\sqrt{2.5}$ $(E)\sqrt{3.2}$



解析:橢圓方程式: $\frac{x^2}{4} + \frac{y^2}{1} = 1 \cdots ①$

直線
$$OP$$
 方程式 $y = x$ 代入① $\Rightarrow \frac{x^2}{4} + x^2 = 1 \Rightarrow x^2 = \frac{4}{5}$
 $\Rightarrow P(x, y) \Rightarrow \overline{OP} = \sqrt{x^2 + y^2} = \sqrt{x^2 + x^2} = \sqrt{2x^2} = \sqrt{2 \cdot \frac{4}{5}} = \sqrt{1.6}$

 $3 \cdot (C)$ 設 $A(-2,-3) \cdot B(4,5) \cdot P$ 點滿足 $\overline{PA} + \overline{PB} = 10 \cdot \mathbb{D}$ 則 P 點所形成之軌跡圖形為 (A) 抛物線 (B)橢圓 (C)線段 (D)射線 (E)無圖形

解析: $\overline{AB} = \sqrt{36 + 64} = 10 = \overline{PA} + \overline{PB}$ ∴ $P \in \overline{AB}$ 線段上

 $4 \cdot (D)$ 設有一橢圓,長軸在直線 x = 5 上,短軸在 y = 1 上,已知短軸爲長軸之 3/5 倍,且中心到焦點的距離等於 12,則橢圓方程式爲 $(A)\frac{(x-1)^2}{81} + \frac{(y-5)^2}{225} = 1$

(B)
$$\frac{(x-5)^2}{9} + \frac{(y-1)^2}{25} = 1$$
 (C) $\frac{(x-5)^2}{45} + \frac{(y-1)^2}{125} = 1$ (D) $\frac{(x-5)^2}{81} + \frac{(y-1)^2}{225} = 1$ (E) $\frac{(x-5)^2}{225} + \frac{(y-1)^2}{81} = 1$

解析:中心(5,1),c = 12,又 $b = \frac{3}{5}a$, $a^2 = b^2 + c^2$ ∴ a = 15,b = 9

∴ 橢圓爲
$$\frac{(x-5)^2}{81} + \frac{(y-1)^2}{225} = 1$$

5、(B)設橢圓中心爲(2,5),半長軸爲9,半短軸爲4,長軸平行於y軸,則此橢圓方程

武氏 (A)
$$\frac{(x-2)^2}{81} + \frac{(y-5)^2}{16} = 1$$
 (B) $\frac{(x-2)^2}{16} + \frac{(y-5)^2}{81} = 1$ (C) $\frac{(x-2)^2}{9} + \frac{(y-5)^2}{4} = 1$ (D) $\frac{(x-2)^2}{4} + \frac{(y-5)^2}{9} = 1$ (E) $\frac{(x-2)^2}{2} + \frac{(y-5)^2}{3} = 1$

6、(A)坐標平面上有一橢圓,已知其長軸平行 x 軸,短軸的一個頂點爲(-2,1)且其中一 焦點爲(1,-3),則橢圓之長軸長爲 (A)10(B)8(C)2 $\sqrt{13}$ (D)6(E)5

解析: : 長軸平行x 軸又焦點爲(1,-3) : . 長軸爲y=-3 短軸頂點爲(-2,1), 故短軸爲x=-2 , 中心爲(-2,-3) b=4,c=3 : . . 長軸長爲 10

二. 多重選擇題 (每題 10 分)

1、(BC)方程式 $\sqrt{x^2+y^2}+\sqrt{(x-6)^2+(y-8)^2}=20$ 之圖形爲一橢圓,下列何者正確? (A) 長軸長爲 40 (B)中心在(3, 4) (C)短軸長爲 $10\sqrt{3}$ (D)正焦弦長爲 15 (E)短軸在直線 3x+4y-25=0 上

三. 填充題 (每題 10 分)

1、設一橢圓之二焦點爲 F(1,3), F'(1,-3),長軸之長爲 10,則此橢圓之方程式爲____。

答案:
$$\frac{(x-1)^2}{16} + \frac{y^2}{25} = 1$$

解析:中心為(1,0),
$$c = 3$$
, $a = 5$, $b = 4$ 的直橢圓為 $\frac{(x-1)^2}{16} + \frac{y^2}{25} = 1$

2、設方程式 $\frac{y^2}{3-t} + \frac{x^2}{1+t} = 1$ 為焦點在y 軸上之橢圓方程式,則實數 t 的範圍為_____。

答案:1<t<3

解析:焦點在y軸上之橢圓1+t>3-t>0⇒ 1< t<3

3、設 F_1 , F_2 爲橢圓 Γ : $\frac{(x-1)^2}{16} + \frac{(y+3)^2}{25} = 1$ 的焦點,且 \overline{AB} 爲過 F_1 的焦弦,求 $\triangle ABF_2$ 的周長=____。

答案:20

4、中心爲(1,2),短軸有一端點爲(-5,2),正焦弦爲 7.2 的橢圓之方程式爲____。

答案:
$$\frac{(x-1)^2}{36} + \frac{(y-2)^2}{100} = 1$$

解析:中心(1,2),
$$b=6$$
, $\frac{2b^2}{a}=7.2$ ∴ $a=10$,直橢圓為 $\frac{(x-1)^2}{36}+\frac{(y-2)^2}{100}=1$

5、中心爲(1,2),長軸平行x軸,長軸長爲短軸長的3倍,且過點(4,3)之橢圓方程式爲

答案:
$$\frac{(x-1)^2}{18} + \frac{(y-2)^2}{2} = 1$$

6、已知一橢圓的長軸兩端點爲 A(7,-2) , A'(-3,-2) , 兩焦點之間的距離爲 4 ,則此橢圓之 方程式爲_____ ,又其正焦弦長爲_____ 。

答案:
$$\frac{(x-2)^2}{25} + \frac{(y+2)^2}{21} = 1$$
 42/5

解析:中心爲(2,-2)的橫橢圓,a=5,2c=4,c=2, $b=\sqrt{21}$

∴ 橢圓方程式爲
$$\frac{(x-2)^2}{25} + \frac{(y+2)^2}{21} = 1$$
,正焦弦長 $\frac{42}{5}$

7、設A(1,1),B(1,-3),P點滿足 $\overline{PA}+\overline{PB}=6$,則P點之軌跡方程式爲_____。

答案:
$$\frac{(x-1)^2}{5} + \frac{(y+1)^2}{9} = 1$$

8、設圓
$$C$$
 與二定圓 $C_1: x^2 + y^2 = 36$, $C_2: x^2 + (y-2)^2 = 49$ 相切,

(1)當圓 C與圓 C_1 外切時,圓 C 之圓心軌跡方程式爲______,

(2)當圓 C與圓 C_1 內切時,圓 C 之圓心軌跡方程式爲_____。

答案:
$$\frac{x^2}{15} + \frac{(y-1)^2}{16} = 1$$
, $\frac{x^2}{8} + \frac{(y-1)^2}{9} = 1$

解析: C_1 圓心 P(0,0), C_2 圓心 Q(0,2),圓 C 之圓心 R(x,y),圓 C 之半徑爲 r

(1)
$$\overline{RP} = r + 1$$
, $\overline{RQ} = 7 - r$ \therefore $\overline{RP} + \overline{RQ} = 8$, $\overline{PQ} = 2$

中心爲(0,1)之直橢圓爲
$$\frac{x^2}{15} + \frac{(y-1)^2}{16} = 1$$

9、設橢圓之焦點爲(−2,2),又短軸落在直線 x = 2 上,且圖形通過($2 + 2\sqrt{3}$,0),則(1)此橢圓之中心坐標爲_____,(2)此橢圓方程式爲____。

答案: (2,2),
$$\frac{(x-2)^2}{24} + \frac{(y-2)^2}{8} = 1$$

解析:中心爲(2,2),c=4,橢圓爲橫橢圓,故可設其方程式爲 $\frac{(x-2)^2}{b^2+16}+\frac{(y-2)^2}{b^2}=1$,代

入點
$$(2+2\sqrt{3},0)$$
,可得 $12b^2+4(b^2+16)=b^2(b^2+16)\Rightarrow b^4=64$, $b^2=8$

∴橢圓方程式爲
$$\frac{(x-2)^2}{24} + \frac{(y-2)^2}{8} = 1$$

10、過點 $P(\frac{3}{2}\sqrt{2}, \sqrt{2})$,且與橢圓 $\frac{x^2}{15} + \frac{y^2}{10} = 1$ 共焦點的橢圓方程式爲____。

答案:
$$\frac{x^2}{9} + \frac{y^2}{4} = 1$$

11、將一圓 $C: x^2 + y^2 = 36$ 上的每一點到y 軸的距離壓縮到原來的 $\frac{1}{2}$,則所成的壓扁的圓 Γ 之方程式爲

答案:
$$\frac{x^2}{9} + \frac{y^2}{36} = 1$$

12、設橢圓之焦點爲(-4,2),長軸上與此焦點最近之頂點爲(-6,2),又短軸長爲 8,則橢圓方程式爲____。

答案:
$$\frac{(x+1)^2}{25} + \frac{(y-2)^2}{16} = 1$$

中心爲(-1,2)的橫橢圓
$$\frac{(x+1)^2}{25} + \frac{(y-2)^2}{16} = 1$$

$$13 \cdot (1)$$
橢圓 $\frac{x^2}{6} + \frac{y^2}{1} = 1$ 的兩焦點坐標爲_____。

(2)設一橢圓與已知橢圓 $\frac{x^2}{6} + \frac{y^2}{1} = 1$ 共焦點,且過(3,2),則此橢圓方程式爲____。

答案:
$$(1)(\sqrt{5},0)$$
, $(-\sqrt{5},0)$, $(2)\frac{x^2}{15} + \frac{y^2}{10} = 1$

解析:
$$(1)\frac{x^2}{6} + \frac{y^2}{1} = 1$$
 ∴ $a = \sqrt{6}$, $b = 1$, $c = \sqrt{5}$ ∴ 焦點爲 $(\sqrt{5}, 0)$, $(-\sqrt{5}, 0)$

(2)與
$$\frac{x^2}{6} + \frac{y^2}{1} = 1$$
 共焦點之橢圓爲 $\frac{x^2}{6+t} + \frac{y^2}{1+t} = 1$,代入(3,2)

$$\Rightarrow t^2 - 6t - 27 = 0 \qquad \therefore t = 9 \text{ is } -3 \text{ (πe})$$

∴ 橢圓方程式為
$$\frac{x^2}{15} + \frac{y^2}{10} = 1$$

 $14 \times 過(4,0)$ 且與 $x^2 + y^2 = 36$ 相切之圓的圓心軌跡方程式爲____。

答案:
$$\frac{(x-2)^2}{9} + \frac{y^2}{5} = 1$$

解析: 設過 F(4,0)且與 $x^2 + y^2 = 36$ 相切之圓心爲 P(x,y),半徑爲 r,則 $\overline{PF} = r$, O 爲原點, $\overline{PO} = 6 - r$ ∴ $\overline{PF} + \overline{PO} = 6$

故其軌跡方程式爲橢圓中心(2,0),c=2,a=3, $b=\sqrt{5}$

橫橢圓爲
$$\frac{(x-2)^2}{9} + \frac{y^2}{5} = 1$$

15、設A點在x軸上移動,M爲 \overline{AB} 的中點,且M點在y軸上移動,若 \overline{AB} = 4,求 \overline{B} 點的 軌跡方程式____。

答案:
$$\frac{x^2}{4} + \frac{y^2}{16} = 1$$

16、以橢圓 Γ : $x^2 + 4y^2 - 2x + 16y + 1 = 0$ 的正焦弦為兩邊的長方形面積=

17、已知橢圓中心爲(-3,-2),長軸有一端點爲(-3,6),正焦弦之長爲 9,則其橢圓方程式爲 _____,又其兩焦點間的距離爲____。

答案:
$$\frac{(x+3)^2}{36} + \frac{(y+2)^2}{64} = 1$$
, $4\sqrt{7}$

解析:
$$a=8$$
 又 $\frac{2b^2}{a}=9$ ∴ $b=6$,又橢圓爲直橢圓

∴方程式爲
$$\frac{(x+3)^2}{36} + \frac{(y+2)^2}{64} = 1$$
,兩焦點間相距 $4\sqrt{7}$

四. 計算與證明題 (每題 10 分)

- 1、一橢圓之兩焦點及長軸之長如下,試求此橢圓之方程式。
 - (1) 兩焦點爲 (5,2),(-3,2),長軸之長爲 10。
 - (2) 兩焦點爲 (-2,5),(-2,-3),長軸之長爲 12。

答案:

(1) 已知二焦點
$$F(5,2), F'(-3,2)$$
 長軸之長 $2a = 10, a = 5, a^2 = 25$ 中心 $F'(-3,2)$ $c = 5 - 1 = 4$ 件短軸 $b = \sqrt{5^2 - 4^2} = 3, b^2 = 9$
 熊點一左一右 橢圓是橫的
此橢圓之方程式爲 $\frac{(x-1)^2}{25} + \frac{(y-2)^2}{9} = 1$
 (2) 已知二焦點 $F(-2,5), F'(-2,-3)$ 是軸之長 $2a = 12, a = 6, a^2 = 36$ 中心 $F'(-2,1)$ $c = 5 - 1 = 4$ 件短軸 $b = \sqrt{6^2 - 4^2} = \sqrt{20}, b^2 = 20$
 熊點一上一下 橢圓是豎的
此橢圓之方程式爲 $\frac{(x+2)^2}{20} + \frac{(y-1)^2}{36} = 1$

2、設一動點 P 到(3,0)的距離等於它到直線 $x = \frac{16}{3}$ 之距離的 $\frac{3}{4}$,則動點 P 所形成之圖形方程式爲何?

答案: 設P(x,y),

$$\sqrt{(x-3)^2 + y^2} = \frac{\left| x - \frac{16}{3} \right|}{1} \times \frac{3}{4} \Rightarrow 16[(x-3)^2 + y^2] = 9(x - \frac{16}{3})^2 \Rightarrow 7x^2 + 16y^2 = 112$$

- 3、試求下列各橢圓之中心,半長軸,半短軸,長軸兩端點,短軸兩端點,焦點,正焦弦 之長。
 - $(1) x^2 + 4y^2 = 4$

(2)
$$9x^2 + 4y^2 - 36x + 8y + 4 = 0$$

答案: (1) 原式
$$x^2 + 4y^2 = 4$$
 除以 4 $\frac{x^2}{2^2} + \frac{y^2}{1^2} = 1$

中心
$$(0,0)$$
 半長軸 $a=2$ 半短軸 $b=1$

$$c = \sqrt{a^2 - b^2} = \sqrt{3}$$

長軸兩端點
$$(2,0),(-2,0)$$
 短軸兩端點 $(0,1),(0,-1)$ 焦點 $(\sqrt{3},0),(-\sqrt{3},0)$ 正焦弦之長 $\frac{2\cdot 1^2}{2}=1$ $9x^2+4y^2-36x+8y+4=0$ 配方 $9(x^2-4x+4)+4(y^2+2y+1)=36$ 即 $9(x-2)^2+4(y+1)^2=36$ 除以 36 $\frac{(x-2)^2}{2^2}+\frac{(y+1)^2}{3^2}=1$ 中心 $a=3$ 中短軸 $b=2$ $c=\sqrt{3^2-2^2}=\sqrt{5}$ 長軸兩端點 $(2,-1\pm3)$,即 $(2,2),(2,-4)$ 短軸兩端點 $(2\pm2,-1)$,即 $(4,-1),(0,-1)$ 焦點 $(2,-1+\sqrt{5}),(2,-1-\sqrt{5})$ 正焦弦之長 $\frac{2\cdot 2^2}{3}=\frac{8}{3}$

4、設 \overline{AB} = 6,在 \overline{AB} 上有一定點 $P \perp \overline{AP}$: \overline{BP} = 1:2,若點 A 在 x 軸上移動,點 B 在 y 軸上移動,則 P 點所形成之軌跡方程式爲何?

答案: 設
$$P(x,y)$$
 $: \overline{AP} : \overline{BP} = 1 : 2$ $: A(\frac{3}{2}x,0) \cdot B(0,3y)$

$$\sqrt[3]{AB} = 6$$
 \therefore $(\frac{3}{2}x)^2 + (3y)^2 = 36$ \therefore $\frac{x^2}{16} + \frac{y^2}{4} = 1$

即爲P點之軌跡方程式

5、試作出 $0 \le y \le 3(1 + \sqrt{4 - x^2})$ 所表區域之圖形,並求出此區域面積爲何?

答案:

